Análisis y Diseño de Sistemas
Profesor: Eduardo Zubillaga

Estudiante: Engelbert Guevara
 

TRABAJO 1:

Características de TCP/IP y como funciona (tema 2/3)

 

 

 

 

 

 

 

Introducción

 

Internet no es un nuevo tipo de red física, sino un conjunto de tecnologías que permiten interconectar redes muy distintas entre sí. Internet no es dependiente de la máquina ni del sistema operativo utilizado. De esta manera, podemos transmitir información entre un servidor Unix y un ordenador que utilice Windows 98. O entre plataformas completamente distintas como Macintosh, Alpha o Intel. Es más: entre una máquina y otra generalmente existirán redes distintas: redes Ethernet, redes Token Ring e incluso enlaces vía satélite.

 

Como vemos, está claro que no podemos utilizar ningún protocolo que dependa de una arquitectura en particular. Lo que estamos buscando es un método de interconexión general que sea válido para cualquier plataforma, sistema operativo y tipo de red. La familia de protocolos que se eligieron para permitir que Internet sea una Red de redes es TCP/IP. Nótese aquí que hablamos de familia de protocolos ya que son muchos los protocolos que la integran, aunque en ocasiones para simplificar hablemos sencillamente del protocolo TCP/IP.

 

Características de TCP/IP

Ya que dentro de un sistema TCP/IP los datos transmitidos se dividen en pequeños paquetes, éstos resaltan una serie de características.

o        La tarea de IP es llevar los datos a granel (los paquetes) de un sitio a otro. Las computadoras que encuentran las vías para llevar los datos de una red a otra (denominadas enrutadores) utilizan IP para trasladar los datos. En resumen IP mueve los paquetes de datos a granel, mientras TCP se encarga del flujo y asegura que los datos estén correctos.

 

o        Las líneas de comunicación se pueden compartir entre varios usuarios. Cualquier tipo de paquete puede transmitirse al mismo tiempo, y se ordenará y combinará cuando llegue a su destino. Compare esto con la manera en que se transmite una conversación telefónica. Una vez que establece una conexión, se reservan algunos circuitos para usted, que no puede emplear en otra llamada, aun si deja esperando a su interlocutor por veinte minutos.

 

o        Los datos no tienen que enviarse directamente entre dos computadoras. Cada paquete pasa de computadora en computadora hasta llegar a su destino. Éste, claro está, es el secreto de cómo se pueden enviar datos y mensajes entre dos computadoras aunque no estén conectadas directamente entre sí. Lo que realmente sorprende es que sólo se necesitan algunos segundos para enviar un archivo de buen tamaño de una máquina a otra, aunque estén separadas por miles de kilómetros y pese a que los datos tienen que pasar por múltiples computadoras. Una de las razones de la rapidez es que, cuando algo anda mal, sólo es necesario volver a transmitir un paquete, no todo el mensaje.

 

o        Los paquetes no necesitan seguir la misma trayectoria. La red puede llevar cada paquete de un lugar a otro y usar la conexión más idónea que esté disponible en ese instante. No todos los paquetes de los mensajes tienen que viajar, necesariamente, por la misma ruta, ni necesariamente tienen que llegar todos al mismo tiempo.

 

o        La flexibilidad del sistema lo hace muy confiable. Si un enlace se pierde, el sistema usa otro. Cuando usted envía un mensaje, el TCP divide los datos en paquetes, ordena éstos en secuencia, agrega cierta información para control de errores y después los lanza hacia fuera, y los distribuye. En el otro extremo, el TCP recibe los paquetes, verifica si hay errores y los vuelve a combinar para convertirlos en los datos originales. De haber error en algún punto, el programa TCP destino envía un mensaje solicitando que se vuelvan a enviar determinados paquetes.

 

El protocolo TCP/IP tiene que estar a un nivel superior del tipo de red empleado y funcionar de forma transparente en cualquier tipo de red. Y a un nivel inferior de los programas de aplicación (páginas WEB, correo electrónico…) particulares de cada sistema operativo. Todo esto nos sugiere el siguiente modelo de referencia:

 

Capa de aplicación (HTTP, SMTP, FTP, TELNET...)

Capa de transporte (UDP, TCP)

Capa de red (IP)

Capa de acceso a la red (Ethernet, Token Ring...)

Capa física (cable coaxial, par trenzado...)

 
El nivel más bajo es la capa física. Aquí nos referimos al medio físico por el cual se transmite la información. Generalmente será un cable aunque no se descarta cualquier otro medio de transmisión como ondas o enlaces vía satélite.

 

La capa de acceso a la red determina la manera en que las estaciones (ordenadores) envían y reciben la información a través del soporte físico proporcionado por la capa anterior. Es decir, una vez que tenemos un cable, ¿cómo se transmite la información por ese cable? ¿Cuándo puede una estación transmitir? ¿Tiene que esperar algún turno o transmite sin más? ¿Cómo sabe una estación que un mensaje es para ella? Pues bien, son todas estas cuestiones las que resuelve esta capa.

 

Las dos capas anteriores quedan a un nivel inferior del protocolo TCP/IP, es decir, no forman parte de este protocolo. La capa de red define la forma en que un mensaje se transmite a través de distintos tipos de redes hasta llegar a su destino. El principal protocolo de esta capa es el IP aunque también se encuentran a este nivel los protocolos ARP, ICMP e IGMP. Esta capa proporciona el direccionamiento IP y determina la ruta óptima a través de los encaminadores (routers) que debe seguir un paquete desde el origen al destino.

 

La capa de transporte (protocolos TCP y UDP) ya no se preocupa de la ruta que siguen los mensajes hasta llegar a su destino. Sencillamente, considera que la comunicación extremo a extremo está establecida y la utiliza. Además añade la noción de puertos, como veremos más adelante.

 

Una vez que tenemos establecida la comunicación desde el origen al destino nos queda lo más importante, ¿qué podemos transmitir? La capa de aplicación nos proporciona los distintos servicios de Internet: correo electrónico, páginas Web, FTP, TELNET…

 

Capa de red

La familia de protocolos TCP/IP fue diseñada para permitir la interconexión entre distintas redes. El mejor ejemplo de interconexión de redes es Internet: se trata de un conjunto de redes unidas mediante encaminadores o routers.

 

A lo largo de este Curso aprenderemos a construir redes privadas que funcionen siguiendo el mismo esquema de Internet. En una red TCP/IP es posible tener, por ejemplo, servidores web y servidores de correo para uso interno. Obsérvese que todos los servicios de Internet se pueden configurar en pequeñas redes internas TCP/IP.

 

A continuación veremos un ejemplo de interconexión de 3 redes. Cada host (ordenador) tiene una dirección física que viene determinada por su adaptador de red. Estas direcciones se corresponden con la capa de acceso al medio y se utilizan para comunicar dos ordenadores que pertenecen a la misma red. Para identificar globalmente un ordenador dentro de un conjunto de redes TCP/IP se utilizan las direcciones IP (capa de red). Observando una dirección IP sabremos si pertenece a nuestra propia red o a una distinta (todas las direcciones IP de la misma red comienzan con los mismos números, según veremos más adelante).

 

 

Host

Dirección física

Dirección IP

Red

A

00-60-52-0B-B7-7D

192.168.0.10

Red 1

R1

00-E0-4C-AB-9A-FF

192.168.0.1

A3-BB-05-17-29-D0

10.10.0.1

Red 2

B

00-E0-4C-33-79-AF

10.10.0.7

R2

B2-42-52-12-37-BE

10.10.0.2

00-E0-89-AB-12-92

200.3.107.1

Red 3

C

A3-BB-08-10-DA-DB

200.3.107.73

D

B2-AB-31-07-12-93

200.3.107.200

 

 

El concepto de red está relacionado con las direcciones IP que se configuren en cada ordenador, no con el cableado. Es decir, si tenemos varias redes dentro del mismo cableado solamente los ordenadores que permanezcan a una misma red podrán comunicarse entre sí. Para que los ordenadores de una red puedan comunicarse con los de otra red es necesario que existan routers que interconecten las redes. Un router o encaminador no es más que un ordenador con varias direcciones IP, una para cada red, que permita el tráfico de paquetes entre sus redes.

 

La capa de red se encarga de fragmentar cada mensaje en paquetes de datos llamados datagramas IP y de enviarlos de forma independiente a través de la red de redes. Cada datagrama IP incluye un campo con la dirección IP de destino. Esta información se utiliza para enrutar los datagramas a través de las redes necesarias que los hagan llegar hasta su destino.

 

Nota: Cada vez que visitamos una página web o recibimos un correo electrónico es habitual atravesar un número de redes comprendido entre 10 y 20, dependiendo de la distancia de los hosts. El tiempo que tarda un datagrama en atravesar 20 redes (20 routers) suele ser inferior a 600 milisegundos.

 

En el ejemplo anterior, supongamos que el ordenador 200.3.107.200 (D) envía un mensaje al ordenador con 200.3.107.73 (C). Como ambas direcciones comienzan con los mismos números, D sabrá que ese ordenador se encuentra dentro de su propia red y el mensaje se entregará de forma directa. Sin embargo, si el ordenador    200.3.107.200 (D) tuviese que comunicarse con 10.10.0.7 (B), D advertiría que el ordenador destino no pertenece a su propia red y enviaría el mensaje al router R2 (es el ordenador que le da salida a otras redes). El  router entregaría el mensaje de forma directa porque B se encuentra dentro de una de sus redes (la Red 2).

 

 

2.1 Direcciones IP

La dirección IP es el identificador de cada host dentro de su red de redes. Cada host conectado a una red tiene una dirección IP asignada, la cual debe ser distinta a todas las demás direcciones que estén vigentes en ese momento en el conjunto de redes visibles por el host. En el caso de Internet, no puede haber dos ordenadores con 2 direcciones IP (públicas) iguales. Pero sí podríamos tener dos ordenadores con la misma dirección IP siempre y cuando pertenezcan a redes independientes entre sí (sin ningún camino posible que las comunique).

 

Las direcciones IP se clasifican en:

 

Direcciones IP públicas. Son visibles en todo Internet. Un ordenador con una IP pública es accesible (visible) desde cualquier otro ordenador conectado a Internet. Para conectarse a Internet es necesario tener una dirección IP pública.

Direcciones IP privadas (reservadas). Son visibles únicamente por otros hosts de su propia red o de otras redes privadas interconectadas por routers. Se utilizan en las empresas para los puestos de trabajo. Los ordenadores con direcciones IP privadas pueden salir a Internet por medio de un router (o proxy) que tenga una IP pública. Sin embargo, desde Internet no se puede acceder a ordenadores con direcciones IP privadas.

 

A su vez, las direcciones IP pueden ser:

 

Direcciones IP estáticas (fijas). Un host que se conecte a la red con dirección IP estática siempre lo hará con una misma IP. Las direcciones IP públicas estáticas son las que utilizan los servidores de Internet con objeto de que estén siempre localizables por los usuarios de Internet. Estas direcciones hay que contratarlas.

 

Direcciones IP dinámicas. Un host que se conecte a la red mediante dirección IP dinámica, cada vez lo hará con una dirección IP distinta. Las direcciones IP públicas dinámicas son las que se utilizan en las conexiones a Internet mediante un módem. Los proveedores de Internet utilizan direcciones IP dinámicas debido a que tienen más clientes que direcciones IP (es muy improbable que todos se conecten a la vez).

 

Las direcciones IP están formadas por 4 bytes (32 bits). Se suelen representar de la forma a.b.c.d donde cada una de estas letras es un número comprendido entre el 0 y el 255. Por ejemplo la dirección IP del servidor de IBM (www.ibm.com) es 129.42.18.99.

 

Las direcciones IP también se pueden representar en hexadecimal, desde la 00.00.00.00 hasta la FF.FF.FF.FF o en binario, desde la 00000000.00000000.00000000.00000000 hasta la 11111111.11111111.11111111.11111111.

Las tres direcciones siguientes representan a la misma máquina (podemos utilizar la calculadora científica de Windows para realizar las conversiones).

(decimal) 128.10.2.30
(hexadecimal) 80.0A.02.1E
(binario) 10000000.00001010.00000010.00011110

 

¿Cuántas direcciones IP existen? Si calculamos 2 elevado a 32 obtenemos más de 4000 millones de direcciones distintas. Sin embargo, no todas las direcciones son válidas para asignarlas a hosts. Las direcciones IP no se encuentran aisladas en Internet, sino que pertenecen siempre a alguna red. Todas las máquinas conectadas a una misma red se caracterizan en que los primeros bits de sus direcciones son iguales. De esta forma, las direcciones se dividen conceptualmente en dos partes: el identificador de red y el identificador de host.

 

Dependiendo del número de hosts que se necesiten para cada red, las direcciones de Internet se han dividido en las clases primarias A, B y C. La clase D está formada por direcciones que identifican no a un host, sino a un grupo de ellos. Las direcciones de clase E no se pueden utilizar (están reservadas).

 

 

 

0

1

2

3

4

8

16

24

31

Clase A

0

red

host

 

Clase B

1

0

red

host

 

Clase C

1

1

0

red

host

 

Clase D

1

1

1

0

grupo de multicast (multidifusión)

 

Clase E

1

1

1

1

(direcciones reservadas: no se pueden utilizar)

 

Clase

Formato 
(r=red, h=host)

Número de redes

Número de 
hosts por red

Rango de direcciones de redes

Máscara de subred

A

r.h.h.h

128

16.777.214

0.0.0.0 - 127.0.0.0

255.0.0.0

B

r.r.h.h

16.384

65.534

128.0.0.0 - 191.255.0.0

255.255.0.0

C

r.r.r.h

2.097.152

254

192.0.0.0 - 223.255.255.0

255.255.255.0

D

grupo

-

-

224.0.0.0 - 239.255.255.255

-

E

no válidas

-

-

240.0.0.0 - 255.255.255.255

-

 

Nota: Las direcciones usadas en Internet están definidas en la RFC 1166 (en inglés).

 

Difusión (broadcast) y multidifusión (multicast).-- El término difusión (broadcast) se refiere a todos los hosts de una red; multidifusión (multicast) se refiere a varios hosts (aquellos que se hayan suscrito dentro de un mismo grupo). Siguiendo esta misma terminología, en ocasiones se utiliza el término unidifusión para referirse a un único host.

 

2.2 Direcciones IP especiales y reservadas

No todas las direcciones comprendidas entre la 0.0.0.0 y la 223.255.255.255 son válidas para un host: algunas de ellas tienen significados especiales. Las principales direcciones especiales se resumen en la siguiente tabla. Su interpretación depende del host desde el que se utilicen.
 

Bits de red

Bits de host

Significado

Ejemplo

todos 0

Mi propio host

0.0.0.0

todos 0

host

Host indicado dentro de mi red

0.0.0.10

red

todos 0

Red indicada

192.168.1.0

todos 1

Difusión a mi red

255.255.255.255

red

todos 1

Difusión a la red indicada

192.168.1.255

127

cualquier valor válido de host

Loopback (mi propio host)

127.0.0.1

 

 

Difusión o broadcasting es el envío de un mensaje a todos los ordenadores que se encuentran en una red. La dirección de loopback (normalmente 127.0.0.1) se utiliza para comprobar que los protocolos TCP/IP están correctamente instalados en nuestro propio ordenador. Lo veremos más adelante, al estudiar el comando PING.

 

Las direcciones de redes siguientes se encuentran reservadas para su uso en redes privadas (intranets). Una dirección IP que pertenezca a una de estas redes se dice que es una dirección IP privada. 


 

Clase

Rango de direcciones 
reservadas de redes

A

10.0.0.0

B

172.16.0.0 - 172.31.0.0

C

192.168.0.0 - 192.168.255.0

Intranet.-- Red privada que utiliza los protocolos TCP/IP. Puede tener salida a Internet o no. En el caso de tener salida a Internet, el direccionamiento IP permite que los hosts con direcciones IP privadas puedan salir a Internet pero impide el acceso a los hosts internos desde Internet. Dentro de una intranet se pueden configurar todos los servicios típicos de Internet (web, correo, mensajería instantánea, etc.) mediante la instalación de los correspondientes servidores. La idea es que las intranets son como "internets" en miniatura o lo que es lo mismo, Internet es una intranet pública gigantesca.

 

Extranet.-- Unión de dos o más intranets. Esta unión puede realizarse mediante líneas dedicadas (RDSI, X.25, frame relay, punto a punto, etc.) o a través de Internet.

 

Internet.-- La mayor red pública de redes TCP/IP.

 

Por ejemplo, si estamos construyendo una red privada con un número de ordenadores no superior a 254 podemos utilizar una red reservada de clase C. Al primer ordenador le podemos asignar la dirección 192.168.23.1, al segundo 192.168.23.2 y así sucesivamente hasta la 192.168.23.254. Como estamos utilizando direcciones reservadas, tenemos la garantía de que no habrá ninguna máquina conectada directamente a Internet con alguna de nuestras direcciones. De esta manera, no se producirán conflictos y desde cualquiera de nuestros ordenadores podremos acceder a la totalidad de los servidores de Internet (si utilizásemos en un ordenador de nuestra red una dirección de un servidor de Internet, nunca podríamos acceder a ese servidor).

 

CASO PRÁCTICO.- Una empresa dispone de una línea frame relay con direcciones públicas contratadas desde la 194.143.17.8 hasta la 194.143.17.15 (la dirección de la red es 194.143.17.8, su dirección de broadcasting 194.143.17.15 y su máscara de red 255.255.255.248). La línea frame relay está conectada a un router. Diseñar la red para:

3 servidores (de correo, web y proxy)

20 puestos de trabajo

 

Los 20 puestos de trabajo utilizan direcciones IP privadas y salen a Internet a través del Proxy. En la configuración de red de cada uno de estos 20 ordenadores se indicará la dirección "192.168.1.1" en el cuadro "Puerta de enlace". La puerta de enlace (puerta de salida o gateway) es el ordenador de nuestra red que nos permite salir a otras redes. El Proxy tiene dos direcciones IP, una de la red privada y otra de la red pública. Su misión es dar salida a Internet a la red privada, pero no permitir los accesos desde el exterior a la zona privada de la empresa.

Los 3 servidores y el router utilizan direcciones IP públicas, para que sean accesibles desde cualquier host de Internet. La puerta de enlace de Proxy, Correo y Web es 194.143.17.9 (Router).

Obsérvese que la primera y última dirección de todas las redes son direcciones IP especiales que no se pueden utilizar para asignarlas a hosts. La primera es la dirección de la red y la última, la dirección de difusión o broadcasting. La máscara de subred de cada ordenador se ha indicado dentro de su red después de una barra: PC1, PC2, ... , PC20 y Proxy (para su IP 192.168.1.1) tienen la máscara 255.255.255.0 y Router, Web, Correo y Proxy (para su IP 194.143.17.10), la máscara 255.255.255.248. El concepto de máscara de subred se estudia a continuación.

 

2.3 Máscara de subred

Una máscara de subred es aquella dirección que enmascarando nuestra dirección IP, nos indica si otra dirección IP pertenece a nuestra subred o no.

 

La siguiente tabla muestra las máscaras de subred correspondientes a cada clase:


 

Clase

Máscara de subred

A

255.0.0.0

B

255.255.0.0

C

255.255.255.0

 

 

Si expresamos la máscara de subred de clase A en notación binaria, tenemos:

11111111.00000000.00000000.00000000

 

Los unos indican los bits de la dirección correspondientes a la red y los ceros, los correspondientes al host. Según la máscara anterior, el primer byte (8 bits) es la red y los tres siguientes (24 bits), el host. Por ejemplo, la dirección de clase A 35.120.73.5 pertenece a la red 35.0.0.0.

 

Supongamos una subred con máscara 255.255.0.0, en la que tenemos un ordenador con dirección 148.120.33.110. Si expresamos esta dirección y la de la máscara de subred en binario, tenemos:

148.120.33.110 10010100.01111000.00100001.01101110 (dirección de una máquina)
255.255.0.0    11111111.11111111.00000000.00000000 (dirección de su máscara de red)
148.120.0.0    10010100.01111000.00000000.00000000 (dirección de su subred)
               <------RED------> <------HOST----->

 

Al hacer el producto binario de las dos primeras direcciones (donde hay dos 1 en las mismas posiciones ponemos un 1 y en caso contrario, un 0) obtenemos la tercera.

 

Si hacemos lo mismo con otro ordenador, por ejemplo el 148.120.33.89, obtenemos la misma dirección de subred. Esto significa que ambas máquinas se encuentran en la misma subred (la subred 148.120.0.0).

 

148.120.33.89 10010100.01111000.00100001.01011001 (dirección de una máquina)
255.255.0.0   11111111.11111111.00000000.00000000 (dirección de su máscara de red)
148.120.0.0   10010100.01111000.00000000.00000000 (dirección de su subred)

 

En cambio, si tomamos la 148.115.89.3, observamos que no pertenece a la misma subred que las anteriores.

 

148.115.89.3   10010100.01110011.01011001.00000011 (dirección de una máquina)
255.255.0.0    11111111.11111111.00000000.00000000 (dirección de su máscara de red)
148.115.0.0    10010100.01110011.00000000.00000000 (dirección de su subred)

 

Cálculo de la dirección de difusión.-- Ya hemos visto que el producto lógico binario (AND) de una IP y su máscara devuelve su dirección de red. Para calcular su dirección de difusión, hay que hacer la suma lógica en binario (OR) de la IP con el inverso (NOT) de su máscara.

 

En una red de redes TCP/IP no puede haber hosts aislados: todos pertenecen a alguna red y todos tienen una dirección IP y una máscara de subred (si no se especifica se toma la máscara que corresponda a su clase). Mediante esta  máscara un ordenador sabe si otro ordenador se encuentra en su misma subred o en otra distinta. Si pertenece a su misma subred, el mensaje se entregará directamente. En cambio, si los hosts están configurados en redes distintas, el mensaje se enviará a la puerta de salida o router de la red del host origen. Este router pasará el mensaje al siguiente de la cadena y así sucesivamente hasta que se alcance la red del host destino y se complete la entrega del mensaje.

 

 

EJEMPLO.- Los proveedores de Internet habitualmente disponen de una o más redes públicas para dar acceso a los usuarios que se conectan por módem. El proveedor va cediendo estas direcciones públicas a sus clientes a medida que se conectan y liberándolas según se van desconectando (direcciones dinámicas). Supongamos que cierto ISP (proveedor de servicios de Internet) dispone de la red 63.81.0.0 con máscara 255.255.0.0. Para uso interno utiliza las direcciones que comienzan por 63.81.0 y para ofrecer acceso a Internet a sus usuarios, las direcciones comprendidas entre la 63.81.1.0 hasta la 63.81.255.254 (las direcciones 63.81.0.0 y 63.81.255.255 están reservadas).

Si un usuario conectado a la red de este ISP tiene la dirección 63.81.1.1 y quiere transferir un archivo al usuario con IP 63.81.1.2, el primero advertirá que el destinatario se encuentra en su misma subred y el mensaje no saldrá de la red del proveedor (no atravesará el router).

 

 

 


Las máscaras 255.0.0.0 (clase A), 255.255.0.0 (clase B) y 255.255.255.0 (clase C) suelen ser suficientes para la mayoría de las redes privadas. Sin embargo, las redes más pequeñas que podemos formar con estas máscaras son de 254 hosts y para el caso de direcciones públicas, su contratación tiene un coste muy alto. Por esta razón suele ser habitual dividir las redes públicas de clase C en subredes más pequeñas. A continuación se muestran las posibles divisiones de una red de clase C. La división de una red en subredes se conoce como subnetting.

 

 

Máscara de subred

Binario

Número de subredes

Núm. de hosts por subred

Ejemplos de subredes (x=a.b.c por ejemplo, 192.168.1)

255.255.255.0

00000000

1

254

x.0

255.255.255.128

10000000

2

126

x.0, x.128

255.255.255.192

11000000

4

62

x.0, x.64, x.128, x.192

255.255.255.224

11100000

8

30

x.0, x.32, x.64, x.96, x.128, ...

255.255.255.240

11110000

16

14

x.0, x.16, x.32, x.48, x.64, ...

255.255.255.248

11111000

32

6

x.0, x.8, x.16, x.24, x.32, x.40, ...

255.255.255.252

11111100

64

2

x.0, x.4, x.8, x.12, x.16, x.20, ...

255.255.255.254

11111110

128

0

ninguna posible

255.255.255.255

11111111

256

0

ninguna posible

 

2.4 Protocolo IP

IP es el principal protocolo de la capa de red. Este protocolo define la unidad básica de transferencia de datos entre el origen y el destino, atravesando toda la red de redes. Además, el software IP es el encargado de elegir la ruta más adecuada por la que los datos serán enviados. Se trata de un sistema de entrega de paquetes (llamados datagramas IP) que tiene las siguientes características:

·         Es no orientado a conexión debido a que cada uno de los paquetes puede seguir rutas distintas entre el origen y el destino. Entonces pueden llegar duplicados o desordenados.

·         Es no fiable porque los paquetes pueden perderse, dañarse o llegar retrasados.

Nota: El protocolo IP está definido en la RFC 791.

 

2.5 Formato del datagrama IP

El datagrama IP es la unidad básica de transferencia de datos entre el origen y el destino. Viaja en el campo de datos de las tramas físicas (recuérdese la trama Ethernet) de las distintas redes que va atravesando. Cada vez que un datagrama tiene que atravesar un router, el datagrama saldrá de la trama física de la red que abandona y se acomodará en el campo de datos de una trama física de la siguiente red. Este mecanismo permite que un mismo datagrama IP pueda atravesar redes distintas: enlaces punto a punto, redes ATM, redes Ethernet, redes Token Ring, etc. El propio datagrama IP tiene también un campo de datos: será aquí donde viajen los paquetes de las capas superiores.

 

 

Encabezado del
datagrama

Área de datos del datagrama IP

 

 

 

Encabezado de
la trama

Área de datos de la trama

Final de la trama

 

0

10

20

30

0

1

2

3

4

5

6

7

8

9

0

1

2

3

3

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

VERS

HLEN

Tipo de servicio

Longitud total

Identificación

Bandrs

Desplazaiento de fragmento

TTL

Protocolo

CRC cabecera

Dirección IP origen

Dirección IP destino

Opciones IP (si las hay)

Relleno

Datos

...

 

 Campos del datagrama IP:

·         VERS (4 bits). Indica la versión del protocolo IP que se utilizó para crear el datagrama. Actualmente se utiliza la versión 4 (IPv4) aunque ya se están preparando las especificaciones de la siguiente versión, la 6 (IPv6).

·          

·         HLEN (4 bits). Longitud de la cabecera expresada en múltiplos de 32 bits. El valor mínimo es 5, correspondiente a 160 bits = 20 bytes.

·          

·         Tipo de servicio (Type Of Service). Los 8 bits de este campo se dividen a su vez en:

o        Prioridad (3 bits). Un valor de 0 indica baja prioridad y un valor de 7, prioridad
máxima.

o        Los siguientes tres bits indican cómo se prefiere que se transmita el mensaje, es decir, son sugerencias a los encaminadores que se encuentren a su paso los cuales pueden tenerlas en cuenta o no.

o        Bit D (Delay). Solicita retardos cortos (enviar rápido).

o        Bit T (Throughput). Solicita un alto rendimiento (enviar mucho en el menor tiempo posible).

o        Bit R (Reliability). Solicita que se minimice la probabilidad de que el datagrama se pierda o resulte dañado (enviar bien).

o        Los siguientes dos bits no tienen uso.

o         

·         Longitud total (16 bits). Indica la longitud total del datagrama expresada en bytes. Como el campo tiene 16 bits, la máxima longitud posible de un datagrama será de 65535 bytes.

·          

·         Identificación (16 bits). Número de secuencia que junto a la dirección origen, dirección destino y el protocolo utilizado identifica de manera única un datagrama en toda la red. Si se trata de un datagrama fragmentado, llevará la misma identificación que el resto de fragmentos.

·          

·         Banderas o indicadores (3 bits). Sólo 2 bits de los 3 bits disponibles están actualmente utilizados. El bit de Más fragmentos (MF) indica que no es el último datagrama. Y el bit de No fragmentar (NF) prohíbe la fragmentación del datagrama. Si este bit está activado y en una determinada red se requiere fragmentar el datagrama, éste no se podrá transmitir y se descartará.

·          

·         Desplazamiento de fragmentación (13 bits). Indica el lugar en el cual se insertará el fragmento actual dentro del datagrama completo, medido en unidades de 64 bits. Por esta razón los campos de datos de todos los fragmentos menos el último tienen una longitud múltiplo de 64 bits. Si el paquete no está fragmentado, este campo tiene el valor de cero.

·          

·         Tiempo de vida o TTL (8 bits). Número máximo de segundos que puede estar un datagrama en la red de redes. Cada vez que el datagrama atraviesa un router se resta 1 a este número. Cuando llegue a cero, el datagrama se descarta  y se devuelve un mensaje ICMP de tipo "tiempo excedido" para informar al origen de la incidencia.

·          

·         Protocolo (8 bits). Indica el protocolo utilizado en el campo de datos: 1 para ICMP, 2 para IGMP, 6 para TCP y 17 para UDP.

·          

·         CRC cabecera (16 bits). Contiene la suma de comprobación de errores sólo para la cabecera del datagrama. La verificación de errores de los datos corresponde a las capas superiores.

·          

·         Dirección origen (32 bits). Contiene la dirección IP del origen.

·          

·         Dirección destino (32 bits). Contiene la dirección IP del destino.

·          

·         Opciones IP. Este campo no es obligatorio y especifica las distintas opciones solicitadas por el usuario que envía los datos (generalmente para pruebas de red y depuración).

·          

·         Relleno. Si las opciones IP (en caso de existir) no ocupan un múltiplo de 32 bits, se completa con bits adicionales hasta alcanzar el siguiente múltiplo de 32 bits (recuérdese que la longitud de la cabecera tiene que ser múltiplo de 32 bits).

 

Fragmentación

Ya hemos visto que las tramas físicas tienen un campo de datos y que es aquí donde se transportan los datagramas IP. Sin embargo, este campo de datos no puede tener una longitud indefinida debido a que está limitado por el diseño de la red. El MTU de una red es la mayor cantidad de datos que puede transportar su trama física. El MTU de las redes Ethernet es 1500 bytes y el de las redes Token-Ring, 8192 bytes. Esto significa que una red Ethernet nunca podrá transportar un datagrama de más de 1500 bytes sin fragmentarlo.

Un encaminador (router) fragmenta un datagrama en varios si el siguiente tramo de la red por el que tiene que viajar el datagrama tiene un MTU inferior a la longitud del datagrama. Veamos con el siguiente ejemplo cómo se produce la fragmentación de un datagrama.

 

Supongamos que el host A envía un datagrama de 1400 bytes de datos (1420 bytes en total) al host B. El datagrama no tiene ningún problema en atravesar la red 1 ya que 1420 < 1500. Sin embargo, no es capaz de atravesar la red 2 (1420 >= 620). El router R1 fragmenta el datagrama en el menor número de fragmentos posibles que sean capaces de atravesar la red 2. Cada uno de estos fragmentos es un nuevo datagrama con la misma Identificación pero distinta información en el campo de Desplazamiento de fragmentación y el bit de Más fragmentos (MF). Veamos el resultado de la fragmentación:

Fragmento 1: Long. total = 620 bytes; Desp = 0; MF=1 (contiene los primeros 600 bytes de los datos del datagrama original)
Fragmento 2: Long. total = 620 bytes; Desp = 600; MF=1 (contiene los siguientes 600 bytes de los datos del datagrama original)
Fragmento 3: Long. total = 220 bytes; Desp = 1200; MF=0 (contiene los últimos 200 bytes de los datos del datagrama original)

El router R2 recibirá los 3 datagramas IP (fragmentos) y los enviará a la red 3 sin reensamblarlos. Cuando el host B reciba los fragmentos, recompondrá el datagrama original. Los encaminadores intermedios no reensamblan los fragmentos debido a que esto supondría una carga de trabajo adicional, a parte de memorias temporales. Nótese que el ordenador destino puede recibir los fragmentos cambiados de orden pero esto no supondrá ningún problema para el reensamblado del datagrama original puesto que cada fragmento guarda suficiente información.

Si el datagrama del ejemplo hubiera tenido su bit No fragmentar (NF) a 1, no hubiera conseguido atravesar el router R1 y, por tanto, no tendría forma de llegar hasta el host B. El encaminador R1 descartaría el datagrama.

 

2.6 Protocolo ARP

Dentro de una misma red, las máquinas se comunican enviándose tramas físicas. Las tramas Ethernet contienen campos para las direcciones físicas de origen y destino (6 bytes cada una):

8 bytes

6 bytes

6 bytes

2 bytes

64-1500 bytes

4 bytes

Preámbulo

Dirección física 
destino

Dirección física 
origen

Tipo de trama

Datos de la trama

CRC

El problema que se nos plantea es cómo podemos conocer la dirección física de la máquina destino. El único dato que se indica en los datagramas es la dirección IP de destino. ¿Cómo se pueden entregar entonces estos datagramas? Necesitamos obtener la dirección física de un ordenador a partir de su dirección IP. Esta es justamente la misión del protocolo ARP (Address Resolution Protocol, protocolo de resolución de direcciones).

Nota: El protocolo ARP está definido en la RFC 826 (en inglés)

Host

Dirección física

Dirección IP

Red

A

00-60-52-0B-B7-7D

192.168.0.10

Red 1

R1

00-E0-4C-AB-9A-FF

192.168.0.1

A3-BB-05-17-29-D0

10.10.0.1

Red 2

B

00-E0-4C-33-79-AF

10.10.0.7

R2

B2-42-52-12-37-BE

10.10.0.2

00-E0-89-AB-12-92

200.3.107.1

Red 3

C

A3-BB-08-10-DA-DB

200.3.107.73

D

B2-AB-31-07-12-93

200.3.107.200

 

Vamos a retomar el ejemplo introductorio de este Capítulo. El host A envía un datagrama con origen 192.168.0.10 y destino 10.10.0.7 (B). Como el host B se encuentra en una red distinta al host A, el datagrama tiene que atravesar el router 192.168.0.1 (R1). Se necesita conocer la dirección física de R1.

Es entonces cuando entra en funcionamiento el protocolo ARP: A envía un mensaje ARP a todas las máquinas de su red preguntando "¿Cuál es la dirección física de la máquina con dirección IP 192.168.0.1?". La máquina con dirección 192.168.0.1 (R1) advierte que la pregunta está dirigida a ella y responde a A con su dirección física (00-E0-4C-AB-9A-FF). Entonces A envía una trama física con origen 00-60-52-0B-B7-7D y destino 00-E0-4C-AB-9A-FF conteniendo el datagrama (origen 192.168.0.10 y destino 10.10.0.7). Al otro lado del router R2 se repite de nuevo el proceso para conocer la dirección física de B y entregar finalmente el datagrama a B. El mismo datagrama ha viajado en dos tramas físicas distintas, una para la red 1 y otra para la red 2.

Observemos que las preguntas ARP son de difusión (se envían a todas las máquinas). Estas preguntas llevan además la dirección IP y dirección física de la máquina que pregunta. La respuesta se envía directamente a la máquina que formuló la pregunta.

 

Tabla ARP (caché ARP)

Cada ordenador almacena una tabla de direcciones IP y direcciones físicas. Cada vez que formula una pregunta ARP y le responden, inserta una nueva entrada en su tabla. La primera vez que C envíe un mensaje a D tendrá que difundir previamente una pregunta ARP, tal como hemos visto. Sin embargo, las siguientes veces que C envíe mensajes a D ya no será necesario realizar nuevas preguntas puesto que C habrá almacenado en su tabla la dirección física de D. Sin embargo, para evitar incongruencias en la red debido a posibles cambios de direcciones IP o adaptadores de red, se asigna un tiempo de vida de cierto número de segundos a cada entrada de la tabla. Cuando se agote el tiempo de vida de una entrada, ésta será eliminada de la tabla.

 

Las tablas ARP reducen el tráfico de la red al evitar preguntas ARP innecesarias. Pensemos ahora en distintas maneras para mejorar el rendimiento de la red. Después de una pregunta ARP, el destino conoce las direcciones IP y física del origen. Por lo tanto, podría insertar la correspondiente entrada en su tabla. Pero no sólo eso, sino que todas las estaciones de la red escuchan la pregunta ARP: podrían insertar también las correspondientes entradas en sus tablas. Como es muy probable que otras máquinas se comuniquen en un futuro con la primera, habremos reducido así el tráfico de la red aumentando su rendimiento.

 

Esto que hemos explicado es para comunicar dos máquinas conectadas a la misma red. Si la otra máquina no estuviese conectada a la misma red, sería necesario atravesar uno o más routers hasta llegar al host destino. La máquina origen, si no la tiene en su tabla, formularía una pregunta ARP solicitando la dirección física del router  y le transferiría a éste el mensaje. Estos pasos se van repitiendo para cada red hasta llegar a la máquina destino.

 

 

Como funciona TCP/IP

IP a diferencia del protocolo X.25, que está orientado a conexión, es sin conexión. Está basado en la idea de los datagramas interred, los cuales son transportados transparentemente, pero no siempre con seguridad, desde el hostal fuente hasta el hostal destinatario, quizás recorriendo varias redes mientras viaja.

 

El protocolo IP trabaja de la siguiente manera; la capa de transporte toma los mensajes y los divide en datagramas, de hasta 64K octetos cada uno. Cada datagrama se transmite a través de la red interred, posiblemente fragmentándose en unidades más pequeñas, durante su recorrido normal. Al final, cuando todas las piezas llegan a la máquina destinataria, la capa de transporte los reensambla para así reconstruir el mensaje original.

 

Un datagrama IP consta de una parte de cabecera y una parte de texto. La cabecera tiene una parte fija de 20 octetos y una parte opcional de longitud variable. En la figura 1 se muestra el formato de la cabecera. El campo Versión indica a qué versión del protocolo pertenece cada uno de los datagramas. Mediante la inclusión de la versión en cada datagrama, no se excluye la posibilidad de modificar los protocolos mientras la red se encuentre en operación.

 

El campo Opciones se utiliza para fines de seguridad, encaminamiento fuente, informe de errores, depuración, sellado de tiempo, así como otro tipo de información. Esto, básicamente, proporciona un escape para permitir que las versiones subsiguientes de los protocolos incluyan información que actualmente no está presente en el diseño original. También, para permitir que los experimentadores trabajen con nuevas ideas y para evitar, la asignación de bits de cabecera a información que muy rara vez se necesita.

 

Debido a que la longitud de la cabecera no es constante, un campo de la cabecera, IHL, permite que se indique la longitud que tiene la cabecera en palabras de 32 bits. El valor mínimo es de 5. Tamaño 4 bit.

 

El campo Tipo de servicio le permite al hostal indicarle a la subred el tipo de servicio que desea. Es posible tener varias combinaciones con respecto a la seguridad y la velocidad. Para voz digitalizada, por ejemplo, es más importante la entrega rápida que corregir errores de transmisión. En tanto que, para la transferencia de archivos, resulta más importante tener la transmisión fiable que entrega rápida.

También, es posible tener algunas otras combinaciones, desde un tráfico rutinario, hasta una anulación instantánea. Tamaño 8 bit.

 

La Longitud total incluye todo lo que se encuentra en el datagrama -tanto la cabecera como los datos. La máxima longitud es de 65 536 octetos(bytes). Tamaño 16 bit.

 

El campo Identificación se necesita para permitir que el hostal destinatario determine a qué datagrama pertenece el fragmento recién llegado. Todos los fragmentos de un datagrama contienen el mismo valor de identificación. Tamaño 16 bits.

 

Enseguida viene un bit que no se utiliza, y después dos campos de 1 bit. Las letras DF quieren decir no fragmentar. Esta es una orden para que las pasarelas no fragmenten el datagrama, porque el extremo destinatario es incapaz de poner las partes juntas nuevamente. Por ejemplo, supóngase que se tiene un datagrama que se carga en un micro pequeño para su ejecución; podría marcarse con DF porque la ROM de micro espera el programa completo en un datagrama. Si el datagrama no puede pasarse a través de una red, se deberá encaminar sobre otra red, o bien, desecharse.

 

Las letras MF significan más fragmentos. Todos los fragmentos, con excepción del último, deberán tener ese bit puesto. Se utiliza como una verificación doble contra el campo de Longitud total, con objeto de tener seguridad de que no faltan fragmentos y que el datagrama entero se reensamble por completo.

 

El desplazamiento de fragmento indica el lugar del datagrama actual al cual pertenece este fragmento. En un datagrama, todos los fragmentos, con excepción del último, deberán ser un múltiplo de 8 octetos, que es la unidad elemental de fragmentación. Dado que se proporcionan 13 bits, hay un máximo de 8192 fragmentos por datagrama, dando así una longitud máxima de datagrama de 65 536 octetos, que coinciden con el campo Longitud total. Tamaño 16 bits.

 

El campo Tiempo de vida es un contador que se utiliza para limitar el tiempo de vida de los paquetes. Cuando se llega a cero, el paquete se destruye. La unidad de tiempo es el segundo, permitiéndose un tiempo de vida máximo de 255 segundos. Tamaño 8 bits.

Cuando la capa de red ha terminado de ensamblar un datagrama completo, necesitará saber qué hacer con él. El campo Protocolo indica, a qué proceso de transporte pertenece el datagrama. El TCP es efectivamente una posibilidad, pero en realidad hay muchas más.

 

Protocolo: El número utilizado en este campo sirve para indicar a qué protocolo pertenece el datagrama que se encuentra a continuación de la cabecera IP, de manera que pueda ser tratado correctamente cuando llegue a su destino. Tamaño: 8 bit.

 

El código de redundancia de la cabecera es necesario para verificar que los datos contenidos en la cabecera IP son correctos. Por razones de eficiencia este campo no puede utilizarse para comprobar los datos incluidos a continuación, sino que estos datos de usuario se comprobarán posteriormente a partir del código de redundancia de la cabecera siguiente, y que corresponde al nivel de transporte. Este campo debe calcularse de nuevo cuando cambia alguna opción de la cabecera, como puede ser el tiempo de vida. Tamaño: 16 bit

 

La Dirección de origen contiene la dirección del host que envía el paquete. Tamaño: 32 bit.

 

La Dirección de destino: Esta dirección es la del host que recibirá la información. Los routers o gateways intermedios deben conocerla para dirigir correctamente el paquete. Tamaño: 32 bit.

 

 

La dirección de Internet

 

El protocolo IP identifica a cada ordenador que se encuentre conectado a la red mediante su correspondiente dirección. Esta dirección es un número de 32 bit que debe ser único para cada host, y normalmente suele representarse como cuatro cifras de 8 bit separadas por puntos.

La dirección de Internet (IP Address) se utiliza para identificar tanto al ordenador en concreto como la red a la que pertenece, de manera que sea posible distinguir a los ordenadores que se encuentran conectados a una misma red. Con este propósito, y teniendo en cuenta que en Internet se encuentran conectadas redes de tamaños muy diversos, se establecieron tres clases diferentes de direcciones, las cuales se representan mediante tres rangos de valores:

o      Clase A: Son las que en su primer byte tienen un valor comprendido entre 1 y 126, incluyendo ambos valores. Estas direcciones utilizan únicamente este primer byte para identificar la red, quedando los otros tres bytes disponibles para cada uno de los hosts que pertenezcan a esta misma red. Esto significa que podrán existir más de dieciséis millones de ordenadores en cada una de las redes de esta clase. Este tipo de direcciones es usado por redes muy extensas, pero hay que tener en cuenta que sólo puede haber 126 redes de este tamaño. ARPAnet es una de ellas, existiendo además algunas grandes redes comerciales, aunque son pocas las organizaciones que obtienen una dirección de "clase A". Lo normal para las grandes organizaciones es que utilicen una o varias redes de "clase B".

o      Clase B: Estas direcciones utilizan en su primer byte un valor comprendido entre 128 y 191, incluyendo ambos. En este caso el identificador de la red se obtiene de los dos primeros bytes de la dirección, teniendo que ser un valor entre 128.1 y 191.254 (no es posible utilizar los valores 0 y 255 por tener un significado especial). Los dos últimos bytes de la dirección constituyen el identificador del host permitiendo, por consiguiente, un número máximo de 64516 ordenadores en la misma red. Este tipo de direcciones tendría que ser suficiente para la gran mayoría de las organizaciones grandes. En caso de que el número de ordenadores que se necesita conectar fuese mayor, sería posible obtener más de una dirección de "clase B", evitando de esta forma el uso de una de "clase A".

 

o      Clase C: En este caso el valor del primer byte tendrá que estar comprendido entre 192 y 223, incluyendo ambos valores. Este tercer tipo de direcciones utiliza los tres primeros bytes para el número de la red, con un rango desde 192.1.1 hasta 223.254.254. De esta manera queda libre un byte para el host, lo que permite que se conecten un máximo de 254 ordenadores en cada red. Estas direcciones permiten un menor número de host que las anteriores, aunque son las más numerosas pudiendo existir un gran número redes de este tipo (más de dos millones).

 

 

 

Tabla de direcciones IP de Internet.

 

Clase

Primer byte

Identificación de red

Identificación de hosts

Número de redes

Número de hosts

A

1 .. 126

1 byte

3 byte

126

16.387.064

B

128 .. 191

2 byte

2 byte

16.256

64.516

C

192 .. 223

3 byte

1 byte

2.064.512

254

 

En la clasificación de direcciones anterior se puede notar que ciertos números no se usan. Algunos de ellos se encuentran reservados para un posible uso futuro, como es el caso de las direcciones cuyo primer byte sea superior a 223 (clases D y E, que aún no están definidas), mientras que el valor 127 en el primer byte se utiliza en algunos sistemas para propósitos especiales. También es importante notar que los valores 0 y 255 en cualquier byte de la dirección no pueden usarse normalmente por tener otros propósitos específicos.

 

El número 0 está reservado para las máquinas que no conocen su dirección, pudiendo utilizarse tanto en la identificación de red para máquinas que aún no conocen el número de red a la que se encuentran conectadas, en la identificación de host para máquinas que aún no conocen su número de host dentro de la red, o en ambos casos.

 

El número 255 tiene también un significado especial, puesto que se reserva para el broadcast. El broadcast es necesario cuando se pretende hacer que un mensaje sea visible para todos los sistemas conectados a la misma red. Esto puede ser útil si se necesita enviar el mismo datagrama a un número determinado de sistemas, resultando más eficiente que enviar la misma información solicitada de manera individual a cada uno. Otra situación para el uso de broadcast es cuando se quiere convertir el nombre por dominio de un ordenador a su correspondiente número IP y no se conoce la dirección del servidor de nombres de dominio más cercano.

 

Lo usual es que cuando se quiere hacer uso del broadcast se utilice una dirección compuesta por el identificador normal de la red y por el número 255 (todo unos en binario) en cada byte que identifique al host. Sin embargo, por conveniencia también se permite el uso del número 255.255.255.255 con la misma finalidad, de forma que resulte más simple referirse a todos los sistemas de la red.

 

El broadcast es una característica que se encuentra implementada de formas diferentes dependiendo del medio utilizado, y por lo tanto, no siempre se encuentra disponible. En ARPAnet y en las líneas punto a punto no es posible enviar broadcast, pero sí que es posible hacerlo en las redes Ethernet, donde se supone que todos los ordenadores prestarán atención a este tipo de mensajes.

 

En el caso de algunas organizaciones extensas puede surgir la necesidad de dividir la red en otras redes más pequeñas (subnets). Como ejemplo podemos suponer una red de clase B que, naturalmente, tiene asignado como identificador de red un número de dos bytes. En este caso sería posible utilizar el tercer byte para indicar en qué red Ethernet se encuentra un host en concreto. Esta división no tendrá ningún significado para cualquier otro ordenador que esté conectado a una red perteneciente a otra organización, puesto que el tercer byte no será comprobado ni tratado de forma especial. Sin embargo, en el interior de esta red existirá una división y será necesario disponer de un software de red especialmente diseñado para ello. De esta forma queda oculta la organización interior de la red, siendo mucho más cómodo el acceso que si se tratara de varias direcciones de clase C independientes.

 

TCP:

Una entidad de transporte TCP acepta mensajes de longitud arbitrariamente grande procedentes de los procesos de usuario, los separa en pedazos que no excedan de 64K octetos y, transmite cada pedazo como si fuera un datagrama separado. La capa de red, no garantiza que los datagramas se entreguen apropiadamente, por lo que TCP deberá utilizar temporizadores y retransmitir los datagramas si es necesario. Los datagramas que consiguen llegar, pueden hacerlo en desorden; y dependerá de TCP el hecho de reensamblarlos en mensajes, con la secuencia correcta.

 

Cada octeto de datos transmitido por TCP tiene su propio número de secuencia privado. El espacio de números de secuencia tiene una extensión de 32 bits, para asegurar que los duplicados antiguos hayan desaparecidos, desde hace tiempo, en el momento en que los números de secuencia den la vuelta. TCP, sin embargo, sí se ocupa en forma explícita del problema de los duplicados retardados cuando intenta establecer una conexión, utilizando el protocolo de ida-vuelta-ida para este propósito.

 

En la figura 2 se muestra la cabecera que se utiliza en TCP. La primera cosa que llama la atención es que la cabecera mínima de TCP sea de 20 octetos. A diferencia de la clase 4 del modelo OSI, con la cual se puede comparar a grandes rasgos, TCP sólo tiene un formato de cabecera de TPDU(llamadas mensajes). Enseguida se analizará minuciosamente campo por campo, esta gran cabecera. Los campos Puerto fuente y Puerto destino identifican los puntos terminales de la conexión(las direcciones TSAP de acuerdo con la terminología del modelo OSI). Cada hostal deberá decidir por sí mismo cómo asignar sus puertos.

 

Los campos Numero de secuencia y Asentimiento en superposición efectúan sus funciones usuales. Estos tienen una longitud de 32 bits, debido a que cada octeto de datos está numerado en TCP.

 

La Longitud de la cabecera TCP indica el número de palabra de 32 bits que están contenidas en la cabecera de TCP. Esta información es necesaria porque el campo Opciones tiene una longitud variable, y por lo tanto la cabecera también.

 

Después aparecen seis banderas de 1 bit. Si el Puntero acelerado se está utilizando, entonces URG se coloca a 1. El puntero acelerado se emplea para indicar un desplazamiento en octetos a partir del número de secuencia actual en el que se encuentran datos acelerados. Esta facilidad se brinda en lugar de los mensajes de interrupción. El bit SYN se utiliza para el establecimiento de conexiones. La solicitud de conexión tiene SYN=1 y ACK=0, para indicar que el campo de asentimiento en superposición no se está utilizando. La respuesta a la solicitud de conexión si lleva un asentimiento, por lo que tiene SYN=1 y ACK=1. En esencia, el bit SYN se utiliza para denotar las TPDU CONNECTION REQUEST Y CONNECTION CONFIRM, con el bit ACK utilizado para distinguir entre estas dos posibilidades. El bit FIN se utiliza para liberar la conexión; especifica que el emisor ya no tiene más datos. Después de cerrar una conexión, un proceso puede seguir recibiendo datos indefinidamente. El bit RST se utiliza para reiniciar una conexión que se ha vuelto confusa debido a SYN duplicados y retardados, o a caída de los hostales. El bit EOM indica el Fin del Mensaje.

 

El control de flujo en TCP se trata mediante el uso de una ventana deslizante de tamaño variable. Es necesario tener un campo de 16 bits, porque la ventana indica el número de octetos que se pueden transmitir más allá del octeto asentido por el campo ventana y no cuántas TPDU.

 

El código de redundancia también se brinda como un factor de seguridad extrema. El algoritmo de código de redundancia consiste en sumar simplemente todos los datos, considerados como palabras de 16 bits, y después tomar el complemento a 1 de la suma.

 

El campo de Opciones se utiliza para diferentes cosas, por ejemplo para comunicar tamaño de tampones durante el procedimiento de establecimiento.

 

 

 

 

Bibliografía

 

 

http://usuarios.lycos.es/janjo/janjo1.html

 

http://www.saulo.net/pub/tcpip/a.htm

 

http://www.multingles.net/docs/breve_resumen_TCP-IP.htm

 

http://www.monografias.com/trabajos/protocolotcpip/protocolotcpip.shtml