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ABSTRACT
Cross-channel degradation is one of the significant chal-

lenges facing speaker recognition systems. We study the

problem for speaker recognition using support vector ma-

chines (SVMs). We perform channel compensation in SVM

modeling by removing non-speaker nuisance dimensions in

the SVM expansion space via projections. Training to re-

move these dimensions is accomplished via an eigenvalue

problem. The eigenvalue problem attempts to reduce mul-

tisession variation for the same speaker, reduce different

channel effects, and increase “distance” between different

speakers. We apply our methods to a subset of the Switch-

board 2 corpus. Experiments show dramatic improvement

in performance for the cross-channel case.

1. INTRODUCTION
Cross-channel effects occur when a speaker has been en-

rolled on one type of channel and recognition occurs on a

different channel. Many methods have been proposed to

mitigate the problem—new features, transformation meth-

ods for standard cepstral features, score normalization,

model transformation, etc. Feature-based compensation

methods such as cepstral mean subtraction (CMS), stochas-

tic matching [1], variance normalization, and feature map-

ping [2] have the advantage that they can be applied to

any speaker modeling technique. Score-based normaliza-

tion such as Tnorm [3] can be applied to any system that

produces scores resembling a log-likelihood ratio. Model-

based methods are powerful also, but have typically focused

on GMM methods, e.g. SMS [4]. Our goal in this paper is to

explore model-based methods for support vector machines

(SVMs).

A speaker ID system that has shown good results is

based upon sequence kernels and SVMs [5]. It uses a gener-

alized linear discriminant (typically polynomials) as a ker-

nel. We discuss this more in Section 2.�
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In [6], a method of channel compensation was pre-

sented, which we call Nuisance Attribute Projection (NAP).

The basic idea of NAP is to remove dimensions from the

SVM expansion that are irrelevant to the speaker recogni-

tion problem. These initial results were promising [6]. Here

we expand upon this work showing additional optimization

criteria and extensive experiments.

We note that the closest technique to our channel com-

pensation method is [7]. This work focuses on factor anal-

ysis of a general supervector of parameters. It is quite dis-

tinct from our techniques in that it is targeted toward GMM

speaker recognition, does not use a SVM expansion space or

SVM methodology, does not use a supervised optimization

criterion, and is based upon a MAP criterion.

2. SUPPORT VECTOR MACHINES
At the most basic level, SVMs are two-class hyperplane-

based classifiers operating in a (usually) high-dimensional

space related nonlinearly to the original (usually lower-

dimensional) input space. Given an observation � � � and

a kernel function 	 , an SVM, 
 � � � is given by


 � � � � �� � � � �
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We have assumed the Mercer condition [8]: 	 � � � ) � is an

inner product expressible as

$
� � � &

$
� ) � where

$ ,
� . / ) �2

for some expansion space
2

. We compare the output of

the SVM in (1) to a threshold in order to produce a deci-

sion. The �
�
,

� �
, and �

� 3 5
are obtained through a training

process. The �
�

are called support vectors and the

� �
are the

target class values: ! 8 for in-class and 9 8 for out-of-class.

3. NAP CHANNEL COMPENSATION
In [6] we introduced Nuisance Attribute Projection. Using

NAP requires a corpus labeled with channel and/or speaker

information. We created a projection matrix ; � > 9 � � B
which projects points in the C -dimensional expansion space
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�
onto a subspace that is hopefully more resistant to chan-

nel effects. Then we project all background, test and target

points onto this subspace.

The � � � matrix � (which could have a single column,

or many columns) has orthonormal columns. In our work,� is at most a few hundred, compared to the dimension of

the expansion space, which was typically � 	



�

 
 
 �

We chose � to minimize the average value of cross-

channel distances:�
� � � � � � � �

� �
�

�  
�

! #
�

�  
�

! !
� % �

where the elements of the symmetric matrix
�

are positive

for pairs of training points we want to pull together, negative

for pairs we want to push apart, and zero for pairs we don’t

care about. We have tried several different versions of
� �

The objective function

�
is minimized by the � eigen-

vectors with largest eigenvalues of the eigenvalue problem& ( � � ! & ) � � � - � (2)

where the matrix
( � � ! � diag � � 0 ! # � �

Some definitions:
The corank of a matrix is the rank of its nullspace.0

is the column vector of all ones.0 2
is the vector with a one for each electret point in the

training corpus and a zero for each carbon-button

point.0 3
is the vector with a one for each carbon-button point in

the training corpus and a zero for each electret point.

diag �  ! is the square diagonal matrix whose diagonal ele-

ments are the elements of the vector  .& � 6
�

�  8 ! �
�

�  ; ! � � � � �
�

�  = ! ? is a matrix whose columns

are the points in expansion space representing the

training corpus.

Kernel Space: This eigenvalue problem occurs in expan-

sion space. It has an alternative version in the space spanned

by the training points, which we call kernel space. In this

version. � � & B �
where

B
is the matrix containing the � eigenvectors with

largest eigenvalues of the symmetric generalized eigenvalue

problem

C ( � � ! C B � C B - � (3)

with C � & ) & � This is the version of the equation we used

for all of our experiments.

Weight Matrix: In the simple channel compensation case

we used the weight matrix� � �
� � � H J L N N O Q !

� �
� S 	 channel �  

�
! U� channel �  

�
!


otherwise
(4)

This is the simplest type of weight matrix for minimiz-

ing cross-channel distances, but does nothing to increase

cross-speaker distances, which might also result in an in-

crease in performance. A weight matrix for this is� � W � H J L N N O Q # [ � \ ] O L _ O `
wherea � \ ] O L _ O ` b � � � S 	 if  

�
and  

�
have different speakers



otherwise

3.1. Difference of Channel Means
An alternative, much simpler version of channel compen-

sation is to use the difference between the channel means.

This is a corank-1 projection: � � d #   ) �
�

 
�

� 	 � with

 8 � 	� 3 & 0 3 # 	� 2 & 0 2 �
The vector  8 is not properly normalized, so  �  8 g

�
 8

�
.

Performance is quite similar to corank 	 results as discussed

in Section 4.

As stated, it can only do corank-1 projection. If the

training data has h
i k

different channel types, then a

more elaborate process is possible. One could form theh # 	 -dimensional subspace spanned by all the pairwise

differences between channel means and project those direc-

tions away.

3.2. The 3-Matrix Version of Channel Compensation
As mentioned in [6], a problem with the use of

� H J L N N O Q
is

that it tries to move together utterances that have different

channels (good) but come from speakers that might sound

very different even without channel differences. (bad)

Speaker Shrinking. Certainly we want to move a given

speaker’s different-channel utterance pairs together, but

what about same-channel pairs? They include systematic

differences which are also unrelated to speaker identity,

such as the speaker’s mood or health or differences between

two different carbon-button handsets.

We really should be moving every same-speaker utter-

ance pair together:

� � \ \ !
� �

� S 	 if m and n have the same speaker



otherwise
(5)

We still want to move different-channel utterances to-

gether and different-speaker utterances apart, which gives

us the following 3-term weight matrix:� � W � H J L N N O Q o q � \ \ # [ � \ ] O L _ O ` � (6)

with some positive coefficients W , q , and [ .
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4. EXPERIMENTAL RESULTS
We performed several experiments based upon three cor-

pora from Switchboard (SWB):� (eval03) The 2003 NIST extended data task evalua-

tion (using the ”v1” lists), with single utterance en-

rollment. See [9] for a detailed description of the cor-

pus. A background for the SVM was created from

the unused splits. For EER results, the � � � confi-

dence interval is about �
�

� 	 � . This corpus empha-

sized calls with the same telephone number from en-

rollment.� (dev1) SWB 2 parts 2 and 4 and (dev2) SWB 2 parts

3 and 5. We used 3 session enrollment. Verification

emphasized calls with different telephone numbers

from enrollment. A background for the SVM was cre-

ated from the SWB 2 phase 1 corpus and the unused

portions of SWB 2 phases 4 and 5. For dev1, there

were 
 � � �
�

true trials and � � � � � � false trials. For

dev2, there were � � � � � true trials and

�
� � � � � false

trials. For EER results, the � � � confidence intervals

are �
�

� � � for dev1/M, �
�

� � � for dev1/F, � � � � � for

dev2/M, and � � �
�

� for dev2/F.

The baseline system was a text-independent general-

ized linear discriminant kernel [5] using monomials of up

to degree 3. Input features for eval03 were 18 LP cep-

stral coefficients (LPCC) and deltas (for consistency with

prior work [6]), and for dev1/dev2 were 19 Mel filter-

bank cepstral coefficients (MFCC) and deltas. Standard

channel-compensating measures were applied to the cep-

stral coefficients–cepstral mean subtraction and variance

normalization. The dimension of the SVM expansion space

was approximately �
�

�
� � �

.

Since the extended data task is landline telephone, we

used carbon button (CB) and electret (EL) as our two chan-

nels. We used a GMM channel classifier [2]; other choices

of channel are possible.

4.1. Projection Rank
Significant error-rate reduction is obtained with increasing

corank (see Section 3.2). Figure 1 presents results for male

and female speakers for eval03 and dev1/dev2. The baseline

system corresponds to the corank �
�

points. On eval03,

using corank=128, EER was reduced by 20% below base-

line for male speakers and by 30% for female speakers. In

some tests, the effect of increasing corank is non-monotone,

so for example, statistically significant improvement over

baseline EER for male speakers in dev1 was achieved only

for corank

�
� 


�
.

4.2. Tuning Weight Matrix Scalars
The coefficients  , ! , and " on the three weight matrices

in (6) are tunable system parameters. We surveyed this pa-
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Fig. 1. EER vs. projection corank for male and female test

sets, #  � ! � " * � # � � � � � * �
Table 1. Parameter survey: EER dependence on weight matrix

scale factors. Projection corank = 128. Male speakers only.

Parameter Equal-error Rate (%). / 0 dev-1 dev-2 comb.

0 1 0 3.61 4.72 3.98

1 1 0 3.69 4.72 4.02

10 1 1 3.73 4.59 4.02

10 10 1 3.74 4.59 4.02

10 1 0 3.71 4.70 4.04

1 0 0 3.69 4.66 4.06

1 10 0 3.74 4.72 4.06

1 1 1 4.15 5.05 4.38

10 1 10 4.22 4.94 4.42

1 0 1 4.22 5.03 4.44

1 10 1 4.27 5.13 4.51

0 10 1 (5.27) 6.69 (5.70)

1 1 10 (5.33) 6.75 (5.76)

1 10 10 (5.38) 6.75 (5.76)

0 0 1 (5.35) 6.81 (5.80)

0 1 10 (5.32) 6.82 (5.80)

0 1 1 (5.38) 6.79 (5.83)

baseline 4.61 7.58 5.39
() indicates greater than baseline EER

rameter space seeking a local minimum EER. The results

shown in Table 1 suggest a parameter space favoring equal

or greater values of  and/or ! over " .

The entries in Table 1 fall into three statistically indis-

tinguishable groups. Comparable EERs are achieved with

either channel compensation alone or same-speaker com-

pensation alone. This may result from a rich background

corpus that includes many utterances per speaker, as well

as multiple channels. The DET curves for two of the top

scoring systems are presented in Figure 2.
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Fig. 2. Two DET curves for male speakers at projection corank =

128 using different weight matrix parameters on dev2.

Table 2. EER (%) for same and different channel conditions in

training and testing. Projection corank = 128. CB: carbon button,

EL: electret.

channel test set

train test dev. 1 dev. 2

baseline 4.64 7.15

projected CB and EL 3.69 4.66

baseline 4.38 3.7
�

projected CB CB 4.44 1.7
�

baseline 3.40 4.90

projected EL EL 2.83 4.12

baseline 4.63 0.2
�

projected CB EL 3.97 3.0
�

baseline 4.77 7.58

projected EL CB 5.15 5.15�
statistically insignificant number of true trials for CB enrollments

4.3. Channel Effects
Table 2 gives a break-out of the scores for same vs. cross

channel conditions on train and test, with channel compen-

sation only, � � � � � 
 � � � � �
�

�
�

� � This analysis indicates

that overall error rate on these tests is reduced by channel

compensation but that this improvement is not attributable

exclusively to cross-condition trials.

5. DISCUSSION AND CONCLUSIONS

The weight matrix terms
� � � � � � � �

and
� � �

appear to be

about equally valuable in reducing EER, and in fact don’t

seem to compliment each other. But, they work from dif-

ferent label types, which means a user can get good channel

compensation when either label type is available. In ad-

dition, our channel compensation training corpora all had

many utterances per speaker, typically about 10. If a train-

ing corpus had few or no repeated speakers, then
� � �

prob-

ably would be of little value.� � � � � � � �
and

� � �
have very different numbers of

nonzero elements, which makes us suspect that appropriate

magnitudes for � and � might be very different. Normal-

ization of � , � and 
 should be an interesting area of further

work.

Tuning � , � and 
 has been rather laborious and pos-

sibly prone to overtuning – the difference in EER between

two different values of � � � � � 
 � is often much less than our

confidence intervals, in spite of using quite large test sets.

A better understanding of appropriate values of � � � � � 
 �
would be valuable.

Because of the labor of searching the parameter space,

some of the results we have shown do not use the best possi-

ble parameter values. For example, in Figure 1, � � � � � 
 � �� � � ' � � � is used, which is in the “mediocre” group of param-

eter values.

In conclusion, this group of techniques gives dramatic

gains in SVM speaker ID performance.
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