For further information on multifactorial primes please see Chris Caldwell's
glossary page on
Multifactorial Primes
This site continues the work started by Ray
Ballinger.
The MultiF project's, which started in 2003 aims at finding
To participate
MultiF's
position by number of Primes found
MultiF's
position by score for Primes found
31/08/2009 Rene Dohmen proves 190453!7-1 (digits: 131837) and 206494!7+1 (digits: 143977) prime
14/08/2009 Michael Lau proves 382722!23+1 (digits: 85676) prime
15/06/2009 Rene Dohmen proves 196304!7+1 (digits: 136256) and 199071!7+1 (digits: 138349) prime
06/06/2009 Matt Mills completes !10+/-1 to 120000
02/06/2009 Michael Lau proves 326910!23+1 (digits: 72210) and 336012!23+1 (digits: 74394) prime
05/05/2009 Michael Lau proves 311995!23+1 (digits: 68640) prime
08/01/2009 Michael Lau proves 262949!23+1 (digits: 57001), 268256!23+1 (digits: 58253) and 289137!23+1 (digits: 63196) prime
08/03/2009 Matt Mills proves 108650!10-1 (digits: 50001) and 108754!10-1 (digits: 50053) prime
14/02/2009 Matt Mills proves 107390!10+1 (digits: 49367) and 107552!10+1 (digits: 49448) prime
02/02/2009 Michael Lau proves 248570!23+1 (digits: 53621), 249154!23+1 (digits: 53757), 52538!23+1 (digits: 54552) and 261973!23+1 (digits: 56771) prime
Recent changes are in Red
Type | nmaxtested |
Digits* |
Searcher | primes |
n!2+1 | 100000 | 112762 | primes | |
n!2-1 | 100000 | 93343 | primes | |
n!3+1 | 100000 | 144697 | primes | |
n!3-1 | 110000 | 84173 | Andrea Pacini | primes |
n!4+1 | 120000 | 58508 | Don Routman | primes |
n!4-1 | 120000 | 51252 | Don Routman | primes |
n!5+1 | 100000 | 69090 | primes | |
n!5-1 | 100000 | 77730 | primes | |
n!6+1 | 100000 | 75339 | primes | |
n!6-1 | 100000 | 64524 | primes | |
n!7+1 | 206494 | 143977 | Rene Dohmen | primes |
n!7-1 | 190453 | 131837 | Rene Dohmen | primes |
n!8+1 | 140760 | 61535 | Kimmo Herranen | primes |
n!8-1 | 100000 | 54736 | Kimmo Herranen | primes |
n!9+1 | 100000 | 46520 | primes | |
n!9-1 | 100000 | 49304 | primes | |
n!10+1 | 120000 | 50053 | primes | |
n!10-1 | 120000 | 50001 | primes | |
n!11+1 | 275259 | 124096 | Ken Davis | primes |
n!11-1 | 275259 | 125257 | Ken Davis | primes |
n!12+1 | 120000 | 43013 | primes | |
n!12-1 | 120000 | 41435 | primes | |
n!13+1 | 133400 | 36336 | Ken Davis | primes |
n!13-1 | 133400 | 48041 | Ken Davis | primes |
n!14+1 | 145200 | 47569 | primes | |
n!14-1 | 200000 | 68950 | primes | |
n!15+1 | 150000 | 43867 | primes | |
n!15-1 | 150000 | 46186 | primes | |
n!16+1 | 160000 | 43117 | primes | |
n!16-1 | 160000 | 45370 | primes | |
n!17+1 | 170000 | 46924 | primes | |
n!17-1 | 170000 | 46817 | primes | |
n!18+1 | 180000 | 46361 | primes | |
n!18-1 | 180000 | 46900 | primes | |
n!19+1 | 200000 | 50037 | primes | |
n!19-1 | 200000 | 49615 | primes | |
n!20+1 | 200000 | 73102 | Masataka Oita (290700) 250001+ | primes |
n!20-1 | 200000 | 72521 | Masataka Oita (288574) 250001+ | primes |
n!21+1 | 212048 | 49402 | Masataka Oita (319773) ? | primes |
n!21-1 | 210000 | 41387 | primes | |
n!22+1 | 220000 | 47541 | primes | |
n!22-1 | 200000 | 43162 | primes | |
n!23+1 | 387198 | 85676 | Michael Lau | primes |
n!23-1 | 153400 | 31693 | primes | |
n!24+1 | 240000 | 47047 | primes | |
n!24-1 | 240000 | 48575 | primes | |
n!25+1 | 250000 | 46619 | primes | |
n!25-1 | 250000 | 47337 | primes | |
n!+/-1 | 30000+ | +107707
-142891 |
Various | primes |
* Number of digits in the largest known prime of this form
Multifactorial primes of a different flavour n!k+/-2