Descarga de un tornado. Nws.noaa.gov

 

 

MANUAL DE GEOLOGIA PARA INGENIEROS

 

Cap 04

 

  LA TIERRA SÓLIDA Y FLUIDA

 

 

 

GONZALO DUQUE ESCOBAR

 

 

 

 

4.1  ATMOSFERA

 

A nivel del mar la presión es de una atmósfera (una columna de 10 m de agua ó 1 Kg.f / cm2).

 

Tabla 4. Componentes del aire seco al nivel del mar.    

 

Molécula

% en volumen

Molécula

% en volumen

N2

78,08

He

0,00052

O2

20,95

Kr

0,00011

Ar

0,93

H2

0,00005

CO2

0,031

CH2

0,00002

Ne

0,0018

 

 

 

Durán-Gold-Taberner. Atlas de Geología, Edibook S. A. 1992.

 

 

La composición porcentual de la atmósfera está dominada por el nitrógeno (78.88%) y el oxígeno (20.95%). En los primeros niveles de la atmósfera (región de la troposfera), el gradiente de densidad disminuye: cada 5.5 km. en altitud se supera el 50% de la masa atmosférica, por ejemplo a 11 km. de altitud, se tiene por debajo el 75% y por encima el 25% de la masa atmosférica; también en esta región el gradiente térmico cae, pues la temperatura promedio disminuye en 6°C por kilómetro de elevación.

 

El nitrógeno atmosférico se recicla mediante las actividades humanas y la acción de los microorganismos sobre los desperdicios animales. El oxígeno es reciclado principalmente por la respiración de los animales y las plantas mediante la acción de la fotosíntesis. El dióxido de carbono, que se mezcla con el aire, se recicla mediante la respiración y la fotosíntesis en la dirección opuesta al oxígeno, pero también bajo su forma de H2. El ozono es el producto de la escisión de la molécula de oxígeno en átomos individuales, por acción de la radiación solar, y que se une a moléculas de oxígeno biatómico.

 

 

 

Figura 10. Regiones térmicas de la atmósfera. Tomado de El Clima Futuro, John Gribbin.

 

 

Químicamente la atmósfera se divide en tres capas: la homosfera sobre los primeros 100 km., con proporción constante de componentes; la heterosfera, hasta los 900 km., con predominio de gases ligeros, y la exosfera, donde se da el escape de las partículas ligeras.

 

Pero también físicamente la atmósfera puede dividirse convenientemente en capas térmicas, donde el nivel más bajo es la troposfera o esfera de cambios variables, es decir, de cambios meteorológicos; allí las nubes se pueden clasificar como bajas hasta 2500 m.s.n.m., intermedias entre 2500 y 6000 y altas por encima de los 6000 m.s.n.m. Por el color y el ambiente las nubes pueden ser de agua o de hielo; las primeras dan colores grisáceos debido al agua ya condensada, y en las segundas se trata de vapor de agua por debajo del punto de congelación, origen del granizo. Por la morfología se denominan las nubes como estratos, nimbos, cúmulos y cirros.

 

Por encima de la troposfera está la estratosfera, a unos 10 km. de altitud; es la región de las corrientes de chorro de la zona de interconfluencia tropical que genera los cambios climáticos de lluvia y sequedad intertropicales. A 30 km., y dentro de la estratosfera, está la capa de Ozono de la cual depende la vida en la Tierra; más arriba está la región caliente que termina en la estratopausa a unos 50 km. de altitud. El clima bimodal de Colombia está controlado por la zona de interconfluencia tropical. Se trata de un Ecuador meteorológico donde convergen los Alisios del nordeste y sudeste.

 

Más arriba se encuentra la mesosfera donde la temperatura cae hasta ‑80°C y que termina en la mesopausa a 80 km. de altitud.

 

Por encima de la mesopausa se da la reflexión de las ondas de radio en la noche y por debajo de ella la reflexión en el día. En la mesopausa se presenta un contraste brusco de temperaturas pese a que la densidad del aire es del orden de la millonésima de g/cm3.

 

La última región es la termosfera, llamada ionosfera porque las capas de la región están calientes y enrarecidas; allí se forman las auroras polares.

 

A 200 km. orbitan satélites para observar la superficie del planeta, útiles en estudios geológicos, militares y evaluación de cosechas; a 900 km. los satélites para observar el espacio exterior: es la altura alcanzada en programas tipo trasbordador. Algunos satélites de observación meteorológica se ubican a 35000 Km., desde donde obtienen una visión panorámica del planeta.

 

A más  de 900 Km., en la exosfera, se hacen investigaciones relacionadas con los nuevos materiales y la biotecnología, dos tecnologías que entrarán en escena para el tercer milenio.

 

En la exosfera tenemos la magnetosfera alcanzada por los rayos cósmicos, es la zona de las fajas de Van Allen. La presión del viento solar ejercida sobre la magnetosfera genera una deformación del campo magnético terrestre y una dinámica de pulsaciones. En las épocas de tormentas magnéticas solares, asociadas a los ciclos mensuales de manchas solares, la intensidad del campo magnético terrestre muestra bruscas oscilaciones que interfieren en las medidas de prospección magnetométrica que ejecutan los geofísicos. Es importante el magnetismo terrestre no sólo por las posibilidades que genera para la navegación sino también para la prospección de recursos minerales y administración de sistemas de riego útiles en los planes de seguridad agroalimentaria.

 

 

4.2  LA TIERRA SÓLIDA

 

Es un geoide de capas concéntricas con densidad creciente hacia el interior y radio medio de 6370 Km. La observación directa del interior de la Tierra sólo es factible para las zonas más superficiales; sobre la composición y estructura del resto se dispone de la información extraída de fenómenos naturales, principalmente del comportamiento de las ondas sísmicas.

 

Cuando se produce un sismo parten desde el hipocentro ondas P y S que se propagan en todas direcciones siguiendo leyes perfectamente conocidas. Así, las variaciones de la trayectoria y velocidad de estas ondas, obedecen a cambios de la naturaleza y estructura del medio por el que viajan.

 

En general, a profundidades pequeñas, 30 a 40 Km. bajo los continentes y 6 a 12 Km. bajo los océanos, la velocidad aumenta bruscamente. A 2900 Km. la velocidad de las ondas P desciende en tanto que las ondas S desaparecen; estos indicios se interpretan como discontinuidades o zonas que delimitan capas en la estructura del planeta.

 

 

Figura 11 Trayectoria de las ondas sísmicas. A partir del epicentro las ondas marchan con trayectorias similares a las propuestas, pues la densidad de la Tierra responde a un modelo de capas esféricas concéntricas, cuya geometría se anuncia con las trayectorias críticas. Tomado de Longwell y Flint, Geología Física.

 

 

El modelo clásico resulta de la interpretación del comportamiento de las ondas sísmicas. Ninguna perforación ha llegado al MOHO, discontinuidad que separa la corteza del manto superior. En la corteza distinguimos la corteza oceánica densa (SIMA) y la continental ligera (SIAL), separadas ambas por la discontinuidad de CONRAD que explicaría el comportamiento anómalo de ondas sísmicas, probablemente por una zona andesítica entre las dos regiones.

 

Por debajo de la corteza encontramos el manto superior, donde se establecen las corrientes de convección; se trata de una masa en flujo plástico cuya composición presenta desorden atómico. Dentro de ella, a 480 Km. de profundidad, esta la discontinuidad de los 20°, llamada así porque una estación sismológica ubicada a 2240 Km. del epicentro detecta un comportamiento anómalo de las ondas sísmicas interiores (1° son casi 112 Km. sobre la superficie).

 

Tabla 5. Estructura de la Tierra.

Componente Estructural

Profundidad

(Km.)

Presión

(kbar)

Densidad

(Kg/m3)

Temperatura

(°C)

Corteza

0-50

0-100

0-3000

0-500

Discontinuidad de Mohorovicic

Manto superior

50-400

100-150

3000-3500

500-1750

Zona transición

400-1000

150-325

3500-4500

1750-2000

Manto profundo

1000-2900

325-1325

4500-10000

2000-3000

Discontinuidad de Gutenberg

Núcleo exterior

2900-5100

1325-3300

10000-2100

3000-3600

Núcleo sólido

5100-6370

3300-3750

12100-12500

3600-4000

 

Adaptado de Sydney Clark. La estructura de la Tierra, Orbis, 1986.

 

 

El manto profundo con densidad entre 4.3 y 5.5 g/cm3, termina en la discontinuidad de Gutenberg; se considera sólido y con ordenamiento atómico. Más al interior encontramos el núcleo de Fe y Ni; se supone que la envoltura exterior es líquido‑gaseosa puesto que puede ser cruzada por las ondas P pero no por las S. Por último está el núcleo sólido (supuesto así porque las ondas S reaparecen) con densidad de 15 g/cm3 y una temperatura del orden de los 5000°C.

 

No obstante, el promedio de densidad de la Tierra sólida es de 5.5 g/cm3, en virtud de la participación del manto inferior (5.0 g/cm3) y el núcleo exterior (5.7 g/cm3).

 

 

Figura 12. Corte ideal del planeta Tierra, estructura plana con acercamiento. Los valores dependen del modelo geofísico adoptado. Tomado de La Tierra en Movimiento, J Gribbin.

 

 

 

Un modelo actual de la Tierra sólida, a la luz de la teoría de la tectónica de placas y  de la trayectoria de las ondas sísmicas debe asumir rangos de espesores de capas, densidades y composiciones de materiales terrestres, además de irregularidades de forma y errores de observación. Pueden compararse los de la tabla anterior con los de la figura siguiente.

 

La corteza está dividida en grandes placas que se generan en las dorsales oceánicas y se destruyen en las fosas oceánicas. Nacen del manto y regresan al manto.

 

La corteza oceánica alcanza una vida media de 150 millones de años, como si la Tierra mudara de piel. Sobre la corteza oceánica flota la continental, y cabalgándola puede alcanzar edades hasta de 3.000 millones de años. La parte externa de la Tierra o litosfera, la conforman las placas rígidas constituidas por la corteza propiamente dicha y el manto superior.

 

Por debajo de la litosfera tenemos la astenosfera que es el manto blando, entre 100 y 700 Km. de profundidad, donde las corrientes de convección están en concurso.  Más abajo, la mesosfera equivale al manto profundo y rígido. La última región es el núcleo, ya descrito.

 

 

4.2.1  Teoría de la isostasia. Explica las raíces de las montañas, y por lo tanto, la manera como un continente flota sobre la corteza oceánica. Esta teoría de presiones iguales, en la cual se soportan las anteriores hipótesis, se vale de dos modelos isostáticos, uno vertical propuesto por Airy y otro horizontal, por Pratt.

 

El modelo isostático vertical, supone una superficie isostática que soporta en cada uno de sus puntos el peso de una columna compuesta de SIAL y de SIMA; en los continentes el SIAL tiene mayor espesor que el SIMA, en los ambientes oceánicos lo contrario. El modelo isostático horizontal supone que cada punto de la superficie isostática soporta el peso de una columna de SIAL en la zona de los continentes o de SIMA en las zonas oceánicas.

 

El proyecto MOHOLE, nacido en el año geofísico internacional (1950), propuso hacer una perforación para alcanzar el manto terrestre cuya localización se basa en las siguientes premisas: el SIAL flota sobre el SIMA y entre ambos el contraste de densidades es del 10% (2.7 y 3.0), respectivamente. Si un témpano de hielo emerge el 10% sobre el agua (pues las densidades son 0,9 y 1,0 respectivamente), lo mismo hará el SIAL sobre el SIMA.

 

Así, la perforación tendrá que buscar las grandes depresiones de la corteza terrestre para evitar las raíces de las montañas; si se utilizan las fosas oceánicas, obviando la profundidad del océano, sería necesario perforar 4 Km. de roca para alcanzar el manto.

 

 

Figura 13. Modelos isostáticos. A la izquierda se ilustra el modelo isostático vertical de Airy y a la derecha el modelo isostático horizontal de Pratt. Con h se señalan los espesores y con r las densidades.

 

 

En la superficie isostática las presiones litostáticas dependen del modelo asumido. Deberá tenerse en cuenta que el espesor medio de la corteza en las zonas continentales es de 60 Km., contra sólo 5 Km. en las zonas oceánicas, de conformidad con el principio de la isostasia.

 

Tabla 6. Composición promedio de la corteza, del manto y del planeta Tierra.

Manto % en peso 

Corteza % en peso

Tierra  % en peso        

O

44,07

O     

45,60    

Fe

35,00

Mg

22,61

Si

27,30

O

30,00

Si

21,10

Al

8,36

Si

15,00

Fe

6,57

Fe

6,22

Mg

13,00

Ca

2,20

CA

4,66

Ni

2,40

Al

1,87

Mg

2,76

S

1,90

Ti

0,43

Na

2,27

Ca

1,10

Na

0,42

K

1,84

Al

1,10

Cr

0,29

Ti

0,63

Na

0,57

Ni

0,16

H

0,15

Cr

0,26

K

0,11

P

0,11

Mn

0,22

Mn

0,11

Mn

0,11

Co

0,13

Durán-Gold-Taberner. Atlas de Geología, Edibook S. A. 1992.

 

 

4.3  HIDROSFERA

 

Definitivamente, se vive en el planeta mar. Los océanos, con una superficie de 360 millones de Km.2, se constituyen en uno de los nuevos espacios para el hombre y fuente de recursos naturales. Cubren 4/5 del hemisferio Sur y más de 3/5 del hemisferio Norte.  La densidad media de la hidrosfera es de 1gr/cm3. La composición de los mares es: 96.4% de agua, 3.5% de sales (de Cl, Na, Mg, S, Ca, K, Br, B, Sr) y 0.1% de otros elementos.

 

El mar es una masa de agua salada que cubre la mayor parte de la superficie terrestre y cada una de las partes en que se considera divida dicha masa.

 

 

Cuadro 4. La composición del agua del mar

 

     Compuesto

Fórmula

Gramos *

   % de Sales

Cloruro de sodio

Cloruro de magnesio

Sulfato de magnesio

Sulfato de calcio

Sulfato de potasio

Carbonato de calcio

Bromuro de magnesio

  Cl Na

  Cl2 Mg

  SO4 Mg

  SO4 Ca

  SO4 K2

  CO3 Ca

º Br2 Mg

  27,213

   3,807

   1,658

   1,260

   0,863

   0,123       0,076

 77,558

 10,878

  4,737

  3,600

  2,465

  0,345

  0,217

 

Raymond Furon. El agua en el mundo, Payot, 1967 * Composición en 35 gr de sales por litro de agua de mar.

 

En conjunto los mares, lagos y ríos cubren el 70% de la superficie de la Tierra y suman 1.500 millones de km.3. Los mares ocupan el 85% del volumen de las aguas de la Tierra. Por la acción de las mareas, las corrientes marinas y el oleaje, se encuentran constantemente en movimiento.

 

Colombia posee dos océanos y un lugar de privilegio por su posición geoestratégica. Además, es el cuarto país del mundo por su riqueza hídrica, enriquecida de biodiversidad.

El fondo del mar es muy variado y posee gran riqueza de formas: fosas, dorsales, cuencas, plataformas, surcos, etc. En el mar de zócalo y en el talud continental, se continúan las formas de tierra firme. En el perfil hipsográfico, el zócalo continental se señala como plataforma continental, la cual emergió en los períodos de glaciación, y hoy se encuentra cubierta de agua; esta plataforma que llega en promedio a 150 m de profundidad, extendiéndose 200 km. mar adentro, es de interés para las naciones por sus recursos biológicos y mineros.

 

Mar adentro el relieve oceánico resulta muy accidentado, se presentan cordilleras cuyos picos explican arcos de islas y otras formas del relieve marino. La relación entre profundidades y alturas de las tierras sumergidas y emergidas muestra predominio de las primeras: en la profundidad media es de 3760 m (destacándose la fosa de las Marianas a 11033 m de profundidad) y en las emergidas el promedio alcanza sólo 822 m (destacándose el Everest con 8848 m). El promedio de una y otra porción da aproximadamente 3000 m sumergidos.

 

 

Figura 14. Perfil hipsográfico. De izquierda a derecha: A. continente, B. plataforma continental, C. talud continental, D. plataforma pelágica, E. talud oceánico, F. fosa abisal. Adaptado de Diccionario Rioduero de Geología.

 

 

 

4.4  EL CLIMA MUNDIAL

 

Las zonas climáticas de la Tierra son una de las características más importantes del planeta, que aparecen determinando el paisaje, la vegetación y la vida animal, y estableciendo un límite a la explotación humana del entorno. Tienen un profundo efecto sobre la cultura. Las condiciones climáticas determinan los niveles de actividad económica, y no es casualidad que los desarrollos industriales se localicen con preferencia dentro de la región climática templada.

 

El clima, o modelo meteorológico a largo plazo de una región, depende de varios factores: la latitud, que determina lo caliente o fría de una zona,  como la extensión e influencia de sus estaciones; las características de las masas de aire predominantes, sean calientes o frías y húmedas o secas, y los factores físicos tales como la distribución relativa de la tierra, el mar, las montañas, los valles, los bosques y los glaciares.

 

Las regiones ecuatoriales son cálidas durante todo el año porque las masas de aire llegadas a ella son cálidas, húmedas y llevan lluvias regulares a lo largo de todo el año. Los climas monzónicos de la India el sudeste asiático y China deben sus características a sus vientos estacionales provenientes de direcciones opuestas; vientos cálidos  y húmedos que se alternan con otros cálidos y secos para producir veranos nubosos y húmedos e inviernos secos.

 

Los climas desérticos propios de amplias zonas situadas a ambos lados del ecuador, están situados en las regiones anticiclónicas y estables donde el aire cálido y seco origina cielos despejados y poca lluvia.

 

En las altitudes medias de ambos hemisferios el aire subtropical cálido suele yuxtaponerse al aire frío subpolar, lo que da origen a frecuentes perturbaciones. Las áreas de estas zonas tienen el clima templado, disfrutando del aire subtropical en verano pero padeciendo en invierno corriente ocasionales de aire frío subpolar.

 

Los climas mediterráneos de California, el sudeste de Australia y la propia región mediterránea se encuentran generalmente en las costas occidentales de los continentes con tendencia a ser secos en verano y tener inviernos suaves y poco lluviosos.

 

Más cerca de los polos, las regiones climáticas están controladas por las masas de aire polar, origen de tiempo frío y seco a lo largo de todo el año con breves veranos soleados.

 

4.4.1 El clima polar. Como el de Vostok en la Antártida y Groenlandia, muestra inviernos largos y fríos, y casi ninguna precipitación, pues los polos son desiertos.

 

4.4.2  El clima de taiga. Como el de Alaska, la península del Labrador y Yakutsk en la Siberia Oriental, muestra ligera precipitación, veranos cortos y fríos en inviernos largos muy fríos.

 

4.4.3  El clima de montaña. Como el de ciudad de Méjico y los andes suramericanos, muestra un clima que varía con la altitud, la latitud y la exposición a los rayos solares.

 

4.4.4  El clima de estepa. Como el de Cloncurry Australia, Irán y Nigeria, muestra ligera precipitación, veranos cálidos e inviernos fríos en algunos lugares.

 

4.4.5  El clima tropical. Como el de Manaos Brasil, Borneo, Java y Sumatra, muestra lluvias densas con sólo uno o dos meses secos, además calor bochornoso.

 

4.4.6  Clima templado. Como el de Amsterdan Holanda, la región de los grandes lagos y el sur de Chile, muestra precipitación en todas las estaciones y temperaturas variables.

 

4.4.7  Clima monzónico y subtropical. Como del de Madrás en la India, la Florida y los Llanos Orientales y la Costa Norte colombiana; siempre es caluroso y presenta a menudo estaciones secas y lluviosas.

 

4.4.8  Clima mediterráneo. Como el de Orán en el norte de África y California, es cálido, tiene precipitaciones leves, inviernos suaves y veranos secos.

 

4.4.9  Clima desértico cálido. Como el de Assuán en Egipto, la península de California, Namibia y el norte de Chile, que  tienen precipitaciones insignificantes y todos los meses calurosos.

 

 

4.5  LOS ELEMENTOS DEL CLIMA

 

Son un conjunto de fenómenos de mucha variabilidad. Los más importantes en nuestro medio son la precipitación y la temperatura del aire, que se combinan con otros elementos como la humedad relativa, el brillo solar, la nubosidad, la radiación y los vientos. Los factores y elementos del clima se diferencian entre sí en que los primeros son fijos para cada lugar; como son la latitud, la altitud y la exposición, y los segundos varían continuamente, pero se correlacionan con los factores para la definición del clima.

 

4.5.1  La precipitación. Sin agua no existiría vida; si contribuye a la formación del suelo, también lo erosiona. Las lluvias se miden en pluviómetros, al milímetro, el cual equivale a un litro de agua por metro cuadrado. Al analizar la precipitación de un lugar debe hacerse referencia a la intensidad, duración, frecuencia y distribución de los aguaceros a lo largo del año.

 

4.5.2  La temperatura. Es el elemento climático que más relación tiene con la distribución de los cultivos y se origina de la energía radiante del Sol. También varía en estrecha relación con la altitud permitiendo clasificar los pisos térmicos caliente, templado, frío y páramo, conforme las altitudes varían de kilómetro en kilómetro. Importa siempre la oscilación diaria entre día y noche.

 

4.5.3  La radiación e irradiación. La primera alude a la caída directa de los rayos solares sobre la superficie terrestre y la segunda al desprendimiento de ondas calóricas de la superficie de la tierra para dispersarse en la atmósfera. De ellos depende la variación de la temperatura entre día y noche. Donde hay baja humedad relativa, como en la sabana, se dan heladas en la noche después de días con alta radiación. En las vertientes, donde la humedad relativa y la nubosidad es alta la radiación es baja y no se dan heladas porque la irradiación o pérdida de calor es escasa.

 

4.5.4  La humedad del aire. Es el agua existente en forma de vapor y se relaciona directamente con la temperatura. Por cada 15°C de temperatura se puede doblar en peso la cantidad de vapor de agua del aire y al contrario, cayendo la temperatura se pierde vapor de agua en forma de neblina, llovizna o lluvia. La humedad es absoluta si alude a la cantidad de vapor de agua, en gramos, por unidad de volumen de aire, en metros cúbicos. La humedad relativa si alude a la proporción de vapor de agua en relación con el que podría contener en el punto de saturación. Esta se da en %.

 

4.5.5  El brillo solar. Son las horas de Sol que llegan cada año a la superficie terrestre. Las zonas con alta nubosidad tienen bajo brillo solar. Para medirlo se usa el heliógrafo, instrumento que concentra los rayos del Sol en una esfera de cristal, y los hace incidir en una cinta de papel que quema cuando la intensidad calorífica por centímetro cuadrado y minuto alcanza más de 0.8 calorías.

 

4.5.6  La nubosidad. Alude a la cantidad de nubes que se presentan en la atmósfera, originadas por concentración de vapor de agua y que pueden condensarse produciendo lluvia. La presencia de nubes se debe a la circulación de vientos intertropicales y de valle a montaña. Nuestro clima es bimodal en razón de que la zona de interconfluencia tropical se desplaza en diciembre hacia el Perú y en junio hacia Cuba, generado dos épocas de lluvia en su paso por Colombia. Las zonas de laderas, contiguas a las partes altas, de la zona andina colombiana, se caracterizan por la frecuente presencia de nubes que en el día circulan desde los valles del Cauca y el Magdalena, a las cordilleras vecinas.

 

4.5.7  La presión atmosférica. Es el peso de una columna de aire, que a nivel del mar de 760 mm de mercurio. A nivel del nevado del Ruiz desciende a 380 mm. También disminuye la presión atmosférica con la temperatura y el contenido de humedad del aire. Por regla general el aire caliente se expande haciéndose más liviano, pero también con el calor puede aumentar la cantidad de vapor de agua en el aire, caso en el cual su densidad se incrementa haciéndolo más pesado.

 

4.5.8   Los vientos. Son movimientos de masa de aire entre zonas de alta y baja presión. La erosión eólica no es frecuente en

zonas de ladera, pero los vientos persistentes traen como consecuencia el secamiento del suelo, lo que ocasiona aridez. Sobre

corrientes oceánicas frías, sobre lagos y sobre valles bajos (donde la masa atmosférica sobre yaciente atenúa la radiación

solar), el aire es relativamente frío y suele asentarse, razón por la cual, se establece una zona de alta presión.

 

 

Cap01 Ciclo geológico

Cap06

Vulcanismo

Cap11

Geología estructural

Cap16

Movimientos masales

Bibilografía

 

Geología  & Astronomía

Cap02 Materria y Energía

Cap07

Rocas ígneas

Cap12

Macizo rocoso

Cap17

Aguas superficiales

Presentación

 

 

Geociencias & Ingenieria

Cap03

El sistema Solar

Cap08

Intemperismo ó meteorización

Cap13

Rocas Metamórficas

Cap18

Aguas subterráneas

  Contenido

 

El Autor

Cap04

La Tierra sólida y fluida

Cap09

Rocas sedimentarias

Cap14

Montañas y teorías orogénicas

Cap19

Glaciares y desiertos

Guía Astronómica

Contacto

 

Cap05

Los minerales

Cap10

Tiempo geológico

Cap15

Sismos

Cap20

Geomorfología

Mecánica de los suelos

Túneles en roca blanda

 


Gonzalo Duque-Escobar

---------------------