(1879-1955)

as fotos demoram um pouqinho para carregar...

Nos anos que se seguiram à unificação da Alemanha, a cidadezinha de Ulm oferecia uma visão típica dos pequenos centros do sul do país. Possuía algumas fundições e uma indústria têxtil, mas a maior parte das atividades girava em torno do pequeno comércio. Seus habitantes, de espírito largo e tolerante, liam poetas como Schiller, Heine e Lessing, num contraste evidente com o autoritarismo dos funcionários e oficiais prussianos, preocupados em consolidar o Império.

Nessa cidade nasceu Albert Einstein, a 14 de março de 1879. Sua infância, porém, seria passada em Munique, para onde seu pai, Hermann Einstein, transferira sua loja de artigos elétricos. Ali Albert realizou seus primeiros estudos. Durante o curso secundário, não se adaptando aos métodos rígidos e mecânicos que caracterizavam o ensino da época, desenvolveu um desinteresse crescente pelas atividades escolares. Para muitos professores, o jovem não passava de um estudante medíocre.

Albert Einstein aos cinco anos de idade. Cedo, porém, o "estudante medíocre" tivera sua curiosidade despertada pela ciência: aos cinco anos, presenteado com uma bússola, Einstein sentira a excitação da descoberta, maravilhando-se com o instrumento. É ele mesmo quem analisa essa emoção que "parece nascer quando uma experiência vem desmentir um mundo de concepções já suficientemente arraigadas em nós. Sempre que uma tal contradição é sentida com força e intensidade, experimentamos uma reação decisiva na maneira de interpretar o mundo. O desenvolvimento dessa interpretação é, em certo sentido, como um vôo contínuo a partir da surpresa".

E Albert não parou mais de se maravilhar. Seu tio Jacob, competente engenheiro, despertou-lhe o interesse pela matemática. Dizia ao sobrinho: "A álgebra é uma ciência muito interessante. Nela se vai à caça de um animal de não se sabe o nome e que se designa por x; quando o caçador o agarra, dá-lhe o verdadeiro nome".

Daí para a escolha de um caminho independente foi apenas um passo e, antes de completar quinze anos, Einstein já se decidira - estudaria, sim, mas fora do horário das aulas, e o que lhe interessasse. De qualquer maneira, quando deixou Munique (expulso da escola sob a alegação de que "sua presença minava o respeito dos demais alunos pela instituição"), todos ficaram contentes: ele próprio, por abandonar uma disciplina sufocante; os professores, por se livrarem de um aluno rebelde.

Mudou-se com a família para Milão, onde, atendendo aos insistentes apelos do pai - que se achava à beira da falência e pedia que terminasse logo os estudos para arranjar trabalho - acabou por ingressar na Escola Politécnica de Zurique, na Suíça alemã, formando-se em 1900. Aí conheceu uma estudante húngara, Milena Maritsch, sua primeira mulher, com a qual teria dois filhos.

Durante esse período, dedicou grande parte do seu tempo à leitura de trabalhos dos mestres do século XIX, adquirindo uma visão mais profunda da Física e de seus problemas. Preferiu sempre organizar livremente seus trabalhos sem se preocupar com os exames. Em sua autobiografia, confessa: "Esta obrigação desviava-me de tal forma do meu trabalho que, depois dos últimos exames, só a idéia de abordar um problema científico me aborrecia durante todo o ano... Efetivamente, é quase milagre que os modernos métodos de ensino não tenham estrangulado completamente a curiosidade de investigação, porque esta delicada plantinha, mais do que estímulo, necessita de liberdade, e, se a privam dela, estiola e morre".

Essa incompatibilidade com os meios acadêmicos lhe traria, contudo, dificuldades. Não conseguindo um lugar de assistente na Escola Politécnica, Albert passou os dois anos seguintes dando aulas particulares ou substituindo ocasionalmente algum professor na escola secundária, até obter, em 1902, um emprego na Repartição de Patentes de Berna. Sua insegurança financeira terminava, abriam-se novas perspectivas.

A respeito desse emprego, escrevia: "A formulação de atas e patentes era uma bênção para mim, pois permitia-me pensar na Física. Além disso, uma profissão prática é salutar para um homem como eu: a carreira universitária condena um jovem pesquisador a certa produção científica, e somente os caracteres bem temperados podem resistir à tentação das análises superficiais".

Com o pouco trabalho e a atmosfera razoavelmente serena da repartição, Einstein pôde produzir a maior parte da obra científica que o imortalizaria: três trabalhos publicados em 1905. O primeiro versava sobre o efeito fotoelétrico e valeu-lhe o Prêmio Nobel de Física de 1921. O segundo, sobre o movimento browniano, não só provou irrefutavelmente a teoria cinética do calor, como forneceu a melhor prova "direta" da existência das moléculas. Comenta Einstein em sua autobiografia: "Meu maior objetivo nisso foi encontrar fatos que pudessem garantir, tanto quanto possível, a existência dos átomos de tamanhos definidos. No meio disto eu descobri que, em concordância com a teoria atômica, deveria haver um movimento de partículas microscópicas suspensas, abertas à observação..."

Einstein na Repartição de Patentes de Berna.

A comprovação de sua lei sobre o movimento browniano, através da experiência feita por Jean Perrin "... convenceu os céticos, que eram mais ou menos numerosos nessa época (entre eles Ostwald e Mach), da realidade dos átomos. A antipatia desses sábios pela teoria atômica prende-se à sua atitude filosófica positivista. Este é um interessante exemplo do fato de que mesmo sábios de espírito cuidadoso e fino instinto podem ser obstruídos, na interpretação dos fatos, por preconceitos filosóficos".

No seu terceiro trabalho de 1905, intitulado Sobre a Eletrodinâmica dos Corpos em Movimento, eram lançadas as bases da Teoria da Relatividade Restrita, que abriria novos caminhos para o desenvolvimento teórico da Física.

O nascimento de uma revolução

Já no século XIX, esboçava-se a grande revolução científica que daria origem à Teoria da Relatividade. Seus primórdios podem ser encontrados nos trabalhos do escocês James Clerk Maxwell que, em meados desse século, previa teoricamente a existência das ondas eletromagnéticas, que deveriam se propagar com a velocidade da luz (isto é, 300.000Km/s).

Em 1888, o cientista alemão Heinrich Hertz conseguiu produzir tais ondas em seu laboratório, mostrando que elas podem ser geradas, detectadas, refletidas e refratadas, bem como interferir entre si. Suas observações comprovaram que a luz é uma onda eletromagnética, ou seja, possui natureza ondulatória.

Essa descoberta trouxe à tona um problema: na teoria newtoniana, uma onda é o produto da vibração de um meio material. As ondas que se formam na água, por exemplo, resultam de uma oscilação que, ao se propagar, afeta as moléculas do líquido. Ora, se a luz é uma onda, é necessário que o espaço seja preenchido por alguma substância que possa oscilar; do contrário a luz solar não poderia alcançar a Terra. A essa substância deu-se o nome de éter.

Assim, o grande problema dos físicos nos fins do século XIX era demonstrar a existência do éter. Uma série de fatos, relacionados com a incidência da luz das estrelas sobre a Terra, parecia indicar que o éter se mantinha em permanente repouso, tornando-se por isso o referencial absoluto. Levantava-se, dessa forma, a possibilidade de calcular a velocidade da Terra em relação ao éter, desde que se medisse a velocidade da luz em diversas circunstâncias.

E foi o que o cientista Albert Michelson fez em 1881 e repetiu com Edward Morley seis anos depois, numa experiência que se tornou célebre.

Quando andamos de carro, o movimento do veículo através do ar provoca um vento em relação a nós. Supondo que o éter existisse, o movimento de translação da Terra através dele - pela mecânica de Galileu-Newton - resultaria numa espécie de "vento" do éter; calcularam, então, que as ondas luminosas provenientes de uma lâmpada seriam mais velozes caso se propagassem no mesmo sentido desse "vento"de éter, do que em sentido contrário.

A partir dessa hipótese, Michelson e Morley procuraram medir a diferença entre essas duas velocidades. Para grande espanto de todos, tal diferença não se verificou: a velocidade da luz permaneceu invariável, ou seja, a luz (onda eletromagnética) não sentiu tal "vento" da concepção mecânica. Estava criado um sério impasse. A mecânica clássica entrava em contradição com o novo campo da Física: a Eletrodinâmica de Maxwell.

Na mecânica de Galileu-Newton imperava o princípio da relatividade de Galileu, enunciado em 1632 no Diálogos sobre os Dois Grandes Sistemas do Mundo, exposto por um dos personagens do livro, Salviati, que representa o autor:

"Salviati - Tranque-se com algum amigo no maior salão sob o convés de algum navio e aí procure moscas e outras pequenas criaturas aladas. Tome também de uma grande banheira cheia de água com alguns peixes; pendure uma garrafa e faça sua água cair gota a gota em outra garrafa de gargalo fino colocada por baixo. Então, com o navio parado, observe cuidadosamente como aqueles pequenos animais alados voam com igual velocidade para todos os lados do salão; como os peixes nadam indiferentemente em todas as direções; e como as gotas caem todas dentro da garrafa de baixo... Tendo observado todos esses pormenores, embora ninguém duvide de que, enquanto o navio permanece parado, eles ocorrerão dessa maneira, faça com que o navio se mova com a velocidade que lhe aprouver, desde que o movimento seja uniforme não variando deste ou daquele modo. Você não será capaz de discernir a menor alteração em qualquer dos efeitos acima mencionados, nem poderá deduzir de qualquer um deles se o navio está em movimento ou parado".

O navio é que se denomina um referencial galileano (ou inercial), ou seja, um sistema de referências que se encontra em repouso ou em movimento retilíneo e com velocidade constante em relação a outro referencial, o solo.

Segundo a mecânica clássica, era possível até então - uma vez conhecido o estado de movimento de um sistema de referências em relação a outro - expressar as coisas que acontecem nesse sistema em termos do que acontece no outro (e vice-versa), pela aplicação das transformações de Galileu, um conjunto de três equações matemáticas.

Essas transformações, entretanto, não eram aplicáveis aos fenômenos eletromagnéticos. E enquanto os físicos tentavam encontrar a solução desse problema dentro da mecânica de Galileu-Newton, Einstein decidiu-se por uma posição mais radical.

Embora achasse compreensível a atitude de querer preservar a mecânica clássica, percebeu que essa preocupação estava causando o enfraquecimento de uma das posturas fundamentais para a pesquisa científica, mais importante do que a sobrevivência desta ou daquela teoria: a manutenção de um espírito sempre aberto para as surpresas que a natureza pode oferecer. Como ele mesmo disse: "A fé em um mundo exterior, independente do sujeito que o percebe, se encontra na base de toda ciência da natureza. Como as percepções dos sentidos não dão senão informações indiretas sobre esse mundo exterior, sobre esse tal "real físico", este só pode ser aprendido pela via especulativa. Daí resulta que nossas concepções do real físico não podem jamais ser definitivas. Se quisermos estar de acordo - de uma maneira lógica tão acurada quanto possível - com os fatos perceptíveis, devemos estar sempre prontos a modificar essas concepções..."

Foi com esse espírito aberto que Einstein atacou o problema com que seus contemporâneos se debatiam. E o ataque foi direto à base: ele negou a validade da Mecânica de Galileu-Newton como modelo adequado para a descrição de todos os fenômenos físicos.

Na contradição percebida entre o eletromagnetismo de Maxwell e a Mecânica de Galileu-Newton, Einstein optou pelo primeiro. Generalizando o princípio de relatividade de Galileu (que vale apenas para velocidades desprezíveis em relação à velocidade da luz), estendeu-o à eletrodinâmica dos corpos em movimento. Em outras palavras, determinou que é impossível, por meio de qualquer experiência realizada dentro de um referencial inercial - seja ela de natureza mecânica ou eletromagnética - , colocar em evidência o estado de repouso ou o movimento retilíneo e uniforme. Afirmou, dessa forma, a universalidade das leis da natureza.

Para obter o Princípio da Relatividade Restrita de Einstein, deve-se acrescentar ao diálogo de Galileu: "Tranque-se com algum amigo...", levando consigo lanternas, ímãs, bobinas elétricas e outros instrumentos eletromagnéticos. A propagação da luz, a interação dos ímãs, cargas e correntes elétricas não porão em evidência se o navio está parado ou em movimento retilíneo com velocidade constante.

Einstein introduziu, ainda, um princípio adicional: "A velocidade da luz, no espaço vazio, tem um valor constante c, independente do movimento da fonte e do movimento do observador (Princípio da Constância da Velocidade da Luz)".

Esses dois princípios equivalem a aceitar o resultado negativo da experiência de Michelson-Morley e afirmar que o éter não existe. E se não existe o éter a servir de referencial para o movimento dos corpos, então só podemos falar do movimento de um corpo em relação a outro corpo. Portanto, Michelson não poderia mesmo conseguir determinar o movimento da Terra em relação ao éter. Ou seja, a velocidade é um conceito relativo.

O espaço vazio tem, assim, a propriedade de transmitir ondas eletromagnéticas, como as da luz, à velocidade de 300.000Km/s, independentemente do movimento do observador. E, em vez de considerar os campos elétricos e magnéticos como tensões do éter, atribui-se a eles uma realidade material.

Além disso, a grande inovação da Teoria da Relatividade são as modificações que ela introduz nos conceitos de tempo e comprimento dos corpos, afirmando que - conforme o referencial usado para medir essas grandezas - o tempo se dilata e os comprimentos se contraem. Não é fácil aceitar essas evidências, pois a experiência diária - que envolve velocidades insignificantes em relação à da luz - parece indicar que, como disse Newton nos seus Princípios, "o tempo absoluto, real e matemático, por si mesmo e por sua própria natureza, flui uniformemente, sem relação com qualquer objeto exterior", e que "o espaço absoluto, em sua própria natureza, sem relação com qualquer objeto exterior, permanece sempre igual e imóvel". No entanto, a adoção dos dois princípios implica uma revisão do caráter "absoluto" dessas noções.

Em seu artigo Sobre a Eletrodinâmica dos Corpos em Movimento, que publicou em 1905, Einstein esclarece: "Todos os nossos raciocínios, nos quais o tempo tem um papel a desempenhar, são opiniões acerca de acontecimentos simultâneos. Se eu disser, por exemplo, 'o trem chega às sete', quero dizer que a coincidência do ponteiro pequeno do meu relógio e a chegada do trem são acontecimentos simultâneos". E, para ilustrar seu conceito relativo de simultaneidade, utiliza o exemplo de dois raios que, ao atingirem as extremidades de um trem - com velocidade constante e movendo-se em linha reta - chamuscam o solo, nele deixando duas marcas.

Se houver dois indivíduos observando o mesmo fato - um dentro do trem, exatamente na metade dele, e outro fora, bem no meio do trecho entre as duas marcas no solo - suas conclusões serão diferentes. Se o observador no solo disser que os dois raios caíram simultaneamente, ou seja, que os sinais luminosos dos dois relâmpagos o atingiram no mesmo instante, o observador no trem dirá ter visto os raios caírem em momentos sucessivos. Isto se explica porque o observador no trem, ao mesmo tempo que se desloca para a direita, de encontro ao relâmpago da frente do trem, se afasta do relâmpago que vem da extremidade traseira do trem. Logo, este último relâmpago deve percorrer uma distância maior do que o primeiro para chegar até o observador. Como a velocidade da luz é constante, o relâmpago da frente o atinge antes do relâmpago de trás.

Para que a diferença de tempo na chegada dos dois relâmpagos seja apreciável para o observador no trem, o veículo deve estar a uma velocidade próxima à da luz.

Da experiência do trem de Einstein concluímos, também, que o intervalo de tempo transcorrido entre a queda dos dois raios é zero para o observador no solo, pois os dois acontecimentos para ele são simultâneos, e é diferente de zero, ou seja, aumenta para o observador no trem, pois para este os dois acontecimentos não são simultâneos. Assim, de um modo geral, podemos dizer que o intervalo de tempo entre dois acontecimentos, medidos num determinado referencial, se dilata quando medido de outro referencial, móvel em relação ao primeiro: cada um "vê" o tempo do outro se dilatar ou fluir mais lentamente. De forma que a indicação de tempo só tem sentido quando for mencionado o referencial onde ele é medido. O mesmo acontece com a noção de comprimento. O comprimento do trem de Einstein em movimento é a distância entre os dois pontos do solo que são ocupados simultaneamente por suas duas extremidades. Sendo a simultaneidade relativa, o comprimento também o será. E fica, portanto, também desprovido de sentido o conceito de "espaço absoluto" de Newton.

Agora, imagine-se o seguinte. Um passageiro, que se encontra no carro restaurante de um trem, come um bife e depois a sobremesa, sentado à mesma mesa, isto é, no mesmo local para o observador no trem. Mas, para o observador no solo, esse passageiro comeu os dois pratos em pontos da ferrovia separados por vários quilômetros. Em resumo: "acontecimentos que ocorrem no mesmo local, em tempos diferentes, num referencial galileano, ocorrem em locais diferentes, quando observados em outro referencial galileano".

A propósito da simultaneidade dos relâmpagos, já se afirmou anteriormente que "acontecimentos que ocorrem ao mesmo tempo, em locais diferentes, num referencial galileano, ocorrem em tempos diferentes, quando observados de outro referencial galileano". Conclui-se, portanto, que as duas afirmações se equivalem: basta substituir a palavra local pela palavra tempo, para de uma obter a outra. Sendo assim, o espaço e o tempo estão em pé de igualdade.

Hermann Minkowski, que foi professor de Einstein em Zurique, fundiu os dois conceitos num só - o espaço-tempo- a respeito do qual declarou: "A partir de agora o espaço-em-si e o tempo-em-si se fundem por completo nas sombras, e só algo que é a união de ambos conserva existência própria".

Que um corpo tenha 3 dimensões, ninguém duvida. Mas, além disso, ele existe porque o tempo flui através dele, constituindo uma 4a. dimensão. Minkowski chamou um ponto qualquer nesse espaço quadridimensional - ou contínuo espaço-tempo - de acontecimento ou evento, que pode ser determinado por quatro números: três para a posição no espaço (comprimento, largura e altura) e um quarto designando o tempo transcorrido.

A Teoria da Relatividade Restrita recebeu importante confirmação experimental algum tempo após sua formulação: verificou-se nos aceleradores atômicos um aumento de massa das partículas à medida que sua velocidade era incrementada.

O SUBIR DA MONTANHA

Mais recente mente, a relatividade do tempo obteve uma comprovação empírica de sua validade, com os mésons-pi (descobertos em 1947 pelo cientista brasileiro César Lattes, juntamente com Powell e Occhialini). Se não houvesse o efeito de dilatação do tempo, essas partículas subatômicas, viajando a uma velocidade quase igual à da luz, percorreriam aproximadamente 10 metros antes de se desintegrarem. Como esse efeito existe, os mésons-pi conseguem cobrir uma distância de 1000 metros antes de sua desintegração. Os físicos do Lawrence Radiation Laboratory, sabendo desse fato, não se preocuparam em colocar a câmara de bolhas de hidrogênio - que detecta mésons - a 100 metros da fonte geradora dos mesmos no Bevatron.

Os efeitos relativísticos só são detectáveis a velocidades muito próximas à da luz. Por isso, a teoria de Einstein não rejeita a Mecânica de Galileu-Newton, utilizando-a como um caso particular para corpos com velocidades desprezíveis em relação à da luz. Diz Einstein, no livro escrito de parceria com- o físico polonês Leopold Infeld, seu, amigo íntimo e colaborador: "Criar uma nova teoria não corresponde a demolir um pardieiro para a construção de um arranha-céu. Será antes subir uma montanha para alcançar visão mais dilatada e descobrir imprevistas ligações entre o nosso ponto de partida e os arredores. Mas o ponto de onde partimos ainda existe e pode ser visto, conquanto apareça cada , vez menor e forme urna parte bem minúscula da grande paisagem desvendada pela ampliação de nosso campo visual". A revolução relativista significou justamente a solução de várias contradições e uma nova maneira de ver e representar o Universo, o "subir da montanha".

UMA PEQUENA MASSA FORNECE GRANDE ENERGIA

A nova mecânica einsteiniana apresenta ainda a importante relação E = mc2 que exprime a equivalência entre a massa e a energia de um corpo. Esta lei afirma que toda variação de massa guarda relação com a variação de energia e vice-versa. Quando um corpo qualquer irradia energia, automaticamente ele perde massa. Assim, o Sol perde cerca de 4 milhões de toneladas de massa por segundo. Para transferir 1 grama de massa a um corpo, é preciso fornecer-lhe a fabulosa energia de 25 milhões de kWh. De modo que, em condições normais, as variações de massa são insignificantes. Mas, na Física Nuclear, as grandes mudanças de massa constituem hoje uma realidade: o fenômeno mais conhecido é o da bomba atômica, onde uma pequena massa de material físsil fornece uma grande energia.

Com a fórmula E = mc2, Einstein demonstrou que o uso da energia atômica era teoricamente possível; mas nada, nem ninguém, podia assegurar que fosse viável na prática. Ao tempo da Segunda Guerra Mundial, Einstein já se encontrava nos Estados Unidos, refugiado da perseguição aos judeus, que se iniciara em 1933 com a ascensão de Hitler. E a 2 de agosto de 1939, solicitado por vários físicos, entre os quais Szilard, escreveu ao presidente Roosevelt uma carta, em que o alertava sobre o perigo de urna bomba atômica nazista. "Tenho o conhecimento de que a Alemanha pôs fim à venda de urânio das minas tchecas de que se apossou."

Se a derrota da Alemanha afastou este temor, outro, entretanto, surgiu. Sua carta de advertência fora o ponto de partida para o projeto de fabricação da bomba americana. E Szilard foi novamente à procura de Einstein, para que ele mais uma vez se dirigisse a Roosevelt, desta vez para pedir que, não se usasse a bomba americana contra o Japão, já praticamente derrotado. A carta foi enviada.

A 12 de abril de 1945, dia da morte repentina do presidente americano, encontraram esta carta no seu gabinete, ainda fechada. Truman, sucessor de Roosevelt, não deu ouvidos a Einstein e aos físicos que o apoiavam, ordenando o bombardeio nuclear de Hiroxima e Nagasáqui, com as terríveis conseqüências que se conhecem.

UM NOVO CONCEITO DE GRAVITAÇÃO OU A RELATIVIDADE GENERALIZADA

A Teoria da Relatividade Restrita tinha sido aceita com entusiasmo pelos físicos, pois vinha resolver muitos problemas. Mas, quanto à Relatividade Generalizada, até mesmo Max Planck não lhe dava a devida importância: "Se agora está quase tudo resolvido, por que você se preocupa com estes problemas?"

Einstein, entretanto, lançou-se com afinco à nova tarefa de interpretar, em termos relativísticos, os fenômenos da gravitação, trabalho que concluiu em 1916. Em síntese, explicou a gravitação como uma decorrência geométrica do espaço-tempo. Tal hipótese mostra que a presença de um corpo em determinado local causa uma distorção na região que lhe é próxima, pois o efeito dos corpos materiais não é engendrar forças, como afirma a lei de gravitação de Newton, mas curvar o espaço-tempo. Se o corpo tem grande massa, os efeitos da distorção devem ser mensuráveis; assim, um raio de luz proveniente de uma estrela distante e que, para incidir sobre a Terra, tenha que passar próximo ao Sol, deveria sofrer uma alteração em sua trajetória, como se observássemos uma mesa de bilhar bem do alto, sem notar que existe nela uma suave depressão. Ao passar por ela na mesa, a bola teria sua trajetória desviada, e se poderia concluir que existe certa "força" exercendo atração sobre ela.

Os planetas e os raios luminosos, em sua trajetória no campo gravitacional do Sol, não são portanto atraídos por ele, mas seguem seu caminho natural, ou seja, a curvatura do espaço-tempo ocasionada pela grande massa desta estrela. Einstein foi mais longe. Se a matéria encurva o espaço-tempo, então é possível admitir a hipótese de que todo o Universo é curvo. E, com essa idéia, criou uma nova Cosmologia.

Ao nível dos fatos experimentais, a Teoria da Relatividade explica três fenômenos importantes: o desvio da órbita do planeta Mercúrio, o encurvamento dos raios luminosos ao passarem perto do Sol e o aumento do comprimento de onda da luz emitida por estrelas densas (desvio para o vermelho gravitacional).

A RESISTÊNCIA À CELEBRIDADE

Pouco depois de ter demonstrado a existência das ondas eletromagnéticas, Hertz descobriu outra coisa interessante: que determinadas substâncias, quando iluminadas, emitiam elétrons. Esse fato, conhecido como efeito fotoelétrico, permaneceu sem explicação plausível, até que Einstein dele se ocupou. Recorrendo à recém-elaborada teoria quântica de Max Planck - segundo a qual a emissão e a absorção da luz, ou da radiação em geral, não têm lugar de maneira contínua mas sim descontínua, por saltos ou quanta de energia (plural da palavra latina quantum, que significa "quantidade determinada")

Einstein aplicou essa concepção ao efeito descoberto, ampliando-a. Achou que Planck havia dito pouco: a descontinuidade não ocorre só por ocasião da emissão ou -absorção da luz, À mas a própria luz é descontínua, comportando-se como uma chuva de partículas ou fótons.

A teoria fotônica de Einstein é uma síntese entre duas teorias contraditórias: a ondulatória, de Huygens, e a corpuscular, de Newton. Sem temer o paradoxo, o cientista afirmou que a luz é simultaneamente o contínuo das ondas e o descontínuo das partículas. Só assim podia falar na freqüência - que é um conceito ondulatório ---de um fóton, que é uma partícula.

O dualismo onda-partícula recebeu um reforço substancial com a teoria do físico francês Louis De Broglie, que o estendeu, em 1924, aos corpos em geral. Em 1921, Einstein recebeu o Prêmio Nobel pela explicação do efeito fotoelétrico. A celebridade, contudo, jamais alterou seu caráter modesto. Depois que abandonou a Alemanha, em 1933, instalou-se definitivamente no Instituto de Estudos Avançados de Princeton, onde lecionaria o resto da vida.

Sua preocupação com o desligamento de tudo o que fosse acessório é bem expressa por Infeld: "Somos escravos de banheiras, geladeiras, automóveis, rádios e milhões de outras coisas... O que Einstein resolveu foi o problema do mínimo: sapatos, calças, camisa e jaqueta, coisas realmente necessárias; seria difícil reduzi-las ainda mais".

Como homem, não foi menos admirável do que como cientista. Um visitante perguntou-lhe certa vez qual seria, no leito de morte, o balanço de sua vida: fora um sucesso ou tinha sido inútil? Respondeu simplesmente: "Nunca me interessaria por essa questão, nem no leito de morte, nem noutra altura ,qualquer. Ao fim e ao cabo, não passo de uma partícula da natureza". .

Na mesma paz em que viveu, Albert Einstein morreria, em 1955.

Veja as lentes gravitacionais previstas por Einstein

Me escreva

Home

Voltar

Assine meu Livro de Visitas