A Page on Brioschi Quintics | ||||||||||||||||||||||||||
"Solvable Brioschi Quintics, Other One-Parameter Forms, and the j-function" by Titus Piezas III ABSTRACT: By a series of quadratic Tschirnhausen transformations, the general quintic can be transformed into the solvable De Moivre quintic. The last step, naturally enough, involves solving a resolvent sextic which turns out to be: a) a polynomial identical to a formula for the j-function in terms of Dedekind eta quotients, and b) the Jacobi sextic in disguise. As a side effect, it gives the complete parametrization of solvable Brioschi quintics with rational coefficients. In addition, solutions of other one-parameter quintics will also be discussed. Mathematics Subject Classification: Primary: 12E12. |
||||||||||||||||||||||||||
Brioschi_solvable.html | ||||||||||||||||||||||||||
Brioschi_solvable.pdf | ||||||||||||||||||||||||||
See also: http://mathworld.wolfram.com/BrioschiQuinticForm.html | ||||||||||||||||||||||||||
Sextics Page | ||||||||||||||||||||||||||
Tschirnhausen Page | ||||||||||||||||||||||||||
For an index of papers visit the Homepage |
||||||||||||||||||||||||||
This webpage was born April 22, 2006. | ||||||||||||||||||||||||||