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ABSTRACT: We provide a new method to solve the general cubic equation by using a linear 
fractional transformation.  This transformation, sometimes referred to as a Möbius 
transformation, can transform the general cubic into the binomial form, though in a manner 
different from the traditional Tschirnhausen transformation that can also transform the cubic into 
the binomial form.  The resulting binomial is then simply solved by the extraction of a cube root. 
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Babylon, c. 1800 BC 
 
 The scribe was finishing his work on the tablet.  He put down his tools for a moment, 
lightly brushed away stray clay bits from some of the still-wet, wedge-shaped notches with his 
finger, then held the tablet at arm’s length to admire his handiwork. 
 It had four columns with fifteen rows.  The second and third columns were numbers that 
belong to what millennia later would be called “Pythagorean triples”.   

The first and thirteenth rows were his favorite, containing symbols equivalent to “119, 
169” and “161, 289”.  So, 1692-1192 = 1202 and 2892-1612 = 2402. 

But it was also equivalent to 134-1192 = 1202 and 174-1612 = 2402 so the first number was 
doubly square.  He wanted to find more relations like these but these two were the only ones he 
found so far. 

Were there infinite numbers like these, he wondered? He shrugged, thought maybe no 
wise master of numbers could ever answer a question like that, and went back to finishing the 
tablet… 

 
Almost four thousand years later, the tablet will find its way across a vast ocean and onto 

a New World.  It will be kept in a place called “Columbia University” and be called the Plimpton 
322… 
 
 
 
I. Introduction 
 
 After the Babylonians discovered the quadratic formula c. 2000 BC, or at least a version 
of it, it would not be surprising if pioneering mathematicians would wonder about the cubic case, 
especially if it arose in a geometric context.  In fact, the Babylonians themselves did consider 
certain cubic equations which arose in trying to solve problems involving volume. 
 
 The ancient Greeks also worked on particular cubic equations.  One of the early 
mathematicians who considered the cubic was Diophantus of Alexandria (c. 200-284 AD), better 
known for his work on what are known as Diophantine equations.  Centuries later, we have the 
Persian poet-mathematician Omar Khayyam (1048-1131) who managed to find the solution to the 

cubic 200x20x200x 23 +=+  and similar equations using conic sections.  



 
Leonardo Fibonacci (1170-1250), of the Fibonacci numbers, also did work on cubics, 

solving 20x10x2x 23 =++  and other equations of similar form.  However, not all 
mathematicians of the time believed that the general cubic was solvable.  The Italian 
mathematician Luca Paciola (1445-1509) thought that it was impossible to solve because of the 
very good reason that he could not do it. 

 
One person who could solve the cubic was Scipione del Ferro (1465-1526), though his 

method worked on the depressed or reduced case, a cubic with no x2 term.  As could Niccolo 
“Tartaglia” Fontana (1499-1557), who independently came up with a solution.  While initially 
thought as still short of the general case, the solution of the reduced cubic was in fact all that was 
needed, as was realized by Girolamo Cardano (1501-1576).  He published the definitive cubic 
formula in a popular book to the dismay, to use a mild word, of Tartaglia, upon whose work 
Cardano had built on. 
 
 
II. The Traditional Method 
 

Before we go to our new method to solve the cubic, perhaps we can give a version of 
Cardano’s formula, slightly modified with insights from later mathematicians, especially Joseph-
Louis Lagrange (1736-1813).   What Lagrange realized was that to solve equations of prime 
degree n with rational coefficients, one has to solve a resolvent equation of degree n-1 also with 
rational coefficients, which are now called Lagrange resolvents.  Thus, to solve the cubic, one has 
to first solve a quadratic. 
 
Given the general cubic, 
 

 0cbxaxx 23 =+++  
 
its resolvent equation is given by, 
 
 0)b3a(z)c27ab9a2(z 3232 =−++−+  
 
such that the solution to the cubic is, 
 

 
3

zza
x

3/1
2

3/1
1 ++−

=  

 
where the zi are the two roots of the resolvent. 
 
 One can note two things.  First, the solution is analogous to the quadratic formula.  And 
while Galois theory has established that formulas using a finite number of arithmetic operations 
and root extractions are impossible for general equations of degree greater than four, there are 
particular equations solvable as such.  So the solution to the solvable quintic  should be similar in 
form, namely, 
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where the zi are the roots of its quartic Lagrange resolvent.  And likewise for the solvable septic,  
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where the zi are the roots of its sextic Lagrange resolvent (see examples for the quintic and septic 
in “An Easy Way To Solve Solvable Quintics Using Two Sextics” by the same author.)  The same 
goes for the solvable 11th-degree, 13th-degree, and other solvable equations of prime degree. 
 
 Second, the constant term of the cubic’s Langrange resolvent is a cube power.  It should 
not be hard to guess that the constant term of the quintic’s Lagrange resolvent is a fifth power, 
and so on for the other odd prime degrees.  One can only marvel at the aesthetics of such 
mathematical consistency, an insight which we can write down in a few lines, but took many 
mathematicians many centuries to discover. 

 
The problem, of course, is to find these Lagrange resolvents, and one can show that these 

depend on an auxiliary resolvent equation of (n-2)! degree, which complicates matters for prime 
n > 3, though we shall reserve more discussion on this for another time. 

 
For an example to the cubic formula, let, 
 

 07xx5x 23 =−+−  
 
Resolvent is, 
 

 022z394z 32 =+−  
 
with roots, 
 
 31293197z i ±=  
 
thus, 
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III.  The New Method 
 
 We mentioned earlier the depressed or reduced cubic , or a cubic with no x2 term.  The 
general cubic can easily be transformed into that form using a simple transformation known as a 
translation. 
 
Given, 
 

 0cbxaxx 23 =+++  
 



we do the substitution x = y+p , for some indeterminate p.  Expanding and collecting the new 
variable y, we have, 
 

 0)cbpapp(y)bap2p3(y)ap3(y 23223 =+++++++++  
 
 Translating an equation means to find its shifted version with no rotation or distortion.  If 
we eliminate its y2 term, then it is equivalent to shifting the graph of the equation such that the 
sum of its roots is 0xxx 321 =++ .  However, if so desired, we can also eliminate its y term.  
By equating any of the coefficients other than the constant term to zero, one can eliminate either 
the y2 or y term by solving for p using an equation less than a cubic. The method can obviously be 
applied to any nth degree equation to eliminate any of its coefficients (other than the constant 
term) by solving an equation of degree less than n. 
 
 If we want to simultaneously eliminate both the y2 or y term, then we set, 
 
 0ap3 =+     (eq.1) 

 0bap2p3 2 =++    (eq.2) 
 
So, p = -a/3 .  Substituting this value into (eq.2), we have, 

 

0b3a 2 =−  
 
If the coefficients a and b of the cubic satisfy the above equation, then by doing a 

translation to eliminate the y2 term, it also automatically eliminates the y term.  Perhaps one can 

then use a prior translation to set 0b3a 2 =− .  Let x = z+q where q is an indeterminate variable.  
Collecting z, we have, 

 

0)cbqaqq(z)baq2q3(z)aq3(z 23223 =+++++++++  
 
We wish to set, 
 

 0)baq2q3(3)aq3( 22 =++−+  
 
If we try to solve for q, 
 

 0)b3aq6q9(aaq6q9 222 =++−++  
 
it resolves to, 
 

 0b3a 2 =−  
 
the variable q disappears and we are left with a condition which was what we wanted to  
accomplish in the first place.  Thus we cannot use a simple translation to simultaneously 
eliminate two terms of the general cubic. 
 
 There is a transformation, known as a Tschirnhausen transformation, (after Count 
Ehrenfried Walter von Tschirnhaus, 1651-1708), that can eliminate two terms of the general 



cubic and higher degrees.  In fact, it can simultaneously eliminate in radicals as much as the three 
terms xn-1, xn-2, xn-3 for n equal to four and higher.  We shall not discuss the basics of this 
transformation here, though the interested reader is referred to the paper “Solving Solvable 
Quintics Using One Fifth Root Extraction” by the same author for more details.   
 

What we would like to discuss though is the possibility that there might be a non-
Tschirnhausen transformation that can reduce the cubic to binomial form using only the 
elementary transformations of translation, dilation, inversions, etc.  A translation is an example of 
an affine transformation.  In general, affine transformations are compositions of translations, 
rotations, dilations, and shears.  They preserve 1) collinearity (all points initially lying on a line 
still lie on a line after transformation) and 2) ratios of distances.  They do not necessarily preserve 
angles. 
 
 However, there are certain transformations that generally preserve angles.  Such 
transformations are called conformal transformations or conformal mappings, an example of 
which is the linear fractional transformation (LFT): 
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where, a, b, c, d are complex numbers and, 
 
 0bcad ≠−  
 
 An LFT is a composition of translations, rotations, and inversions (additive or 
multiplicative) and sends circles and lines to circles or lines.  The above is also known as a 
Möbius transformation, after the mathematician August Ferdinand Möbius (1790-1868) better 
known for the Möbius strip.   
 

We have italicized the operation of inversion to highlight its role.  If we also flip over the 

cubic equation, so to speak, or find the multiplicative inverse of the translation 
qz

1
x
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perhaps we can set b3a 2 − .  After it has been “conditioned”, we still need another translation to 

eliminate z2 and z, so the complete transformation is p
qz

1
x +

+
= , which is equivalent to the 

LFT 
qz
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++= . The two unknowns p and q then give us two degrees of freedom. 

 

 To do the transformation, we substitute p
qz

1
x +

+
=  into the general cubic, expand and 

collect the new variable z, and we get, 
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where the ri are, 
 



 cbpappr 23
1 +++=  

 bap2p3r 2
2 ++=  

 ap3r3 +=  
 
The first step, we set, 
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which resolves to, 
 
 0rr3r 31

2
2 =−    (eq.3) 

 
substituting the ri into (eq.3), we get, 
 
 0ac3bp)c9ab(p)b3a( 222 =−+−+−  
 
and we have the equation for the unknown p in terms of the cubic’s coefficients!   
 

Solving for p and getting the negative case, we have, 
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And we have our first unknown. To get the second, we eliminate the coefficient z2 by letting, 
 
 0rqr3 21 =+  
 
Solving for q, 
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Substituting the ri and the value of p and simplifying, we get, 
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and we now have our two unknowns!  We know that by eliminating z2, since we have 
“conditioned” the equation, it will also automatically eliminate the z term, and we have attained 
our objective of reducing the general cubic into binomial form using a non-Tschirnhausen 
transformation. 
 
 For non-zero a, we will not write down in symbolic form the constant term of this cubic 
binomial as it too unwieldy.  What we only need to know is that given the linear fractional 



transformation p
qz
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x +

+
= , with p and q as defined above, then the cubic will be transformed 

into the binomial form.  For a = 0, we can give the explicit expression for z as it is simpler. 
Given, 
 
 0cbxx3 =++  
 
then, 
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where, 
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with the discriminant 23 c27b4d += . 
 
 
IV. Examples 
 
Example 1. 
  

We can use the same cubic cited earlier to serve as comparison.  Given, 
 

 07xx5x 23 =−+−  
 
Using the identities for p and q in terms of the cubic’s coefficients, we have, 
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let p
qz

1
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+
=  and the cubic transforms into the binomial in the variable z as, 
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so a solution to the cubic is given by, 
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Example 2. 
 
 For the second example, we will use a reduced or depressed cubic.  Given, 
 
 04x2x 3 =++  
 
since we have the explicit expressions for p, q, z, then we find one solution as, 
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where the other two solutions for both examples can be given by using the complex roots of the 
cube root of unity. 
 
 
V.  Conclusion 
 
 In this paper, we have established a new method to find exact solutions to the cubic 
equation.  However, some points should be made.  Since the variables p and q have denominators, 
then there is the possibility of division by zero. Thus, while the method can be applied to the 
general cubic with unconditional symbolic coefficients, it cannot be applied to a cubic with 
coefficients that have certain conditions. 
 

The variable p has the denominator b3a 2 − .  If the cubic to be solved already has 

coefficients such that 0b3a 2 =− , then we will have division by zero.  However, since the 
essence of our method consists of two steps, a) to set the cubic into something with precisely that 
condition and b) a translation that simultaneously eliminates the z2 and z term, then one can just 
skip the first step. 
 

 The variable q has the denominator )ac3b)(b3a(4)c9ab( 222 −−−− .  The expression 

)ac3b)(b3a(4)c9ab( 222 −−−−  is in fact the discriminant of the general cubic.  This is zero if 
and only if the cubic has repeated roots.  If the coefficients are rational, then the cubic will factor 
into rational factors. 
 
 The role of the new method then is not intended to be a mere root-finder; Tartaglia -
Cardano’s formula is more suited for that. Rather, it primarily serves to elucidate a connection 
between cubic equations and conformal mappings, particularly linear fractional transformations 
(LFTs).  Such transformations that transform objects in space to similar objects have connections 
to fractals and iterated functions.  In fact, certain iterates of LFTs are just the convergents to 
simple continued fractions.   

 
It should be interesting to investigate the associated continued fractions of the iterates of 

LFTs that reduce cubics to binomial form, though that would be already outside the scope of this 
paper.  If this paper motivates such investigation, then it would have served it purpose. 
 
 

--End-- 
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