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ABSTRACT: We prove that all irreducible but solvable equations of degree n can be transformed 
in radicals into the binomial form yn+c=0 using a Tschirnhausen transformation of degree n-1.  
The resulting equation is then solvable by a single nth root extraction.  In particular, we illustrate 
the method using the solvable quintic. 
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Dresden, Germany, 1706 
 
 The old man stood by the window of his study, looking out at the grounds of his 
estate.  He barely noticed the light snow falling outside, as he was lost in thought. Things 
hadn’t turned out that well in recent years and now he was deeply in debt. 
 He was of noble blood, a count in fact, but he was also a scientist, a philosopher, 
as well as being a mathematician. However, it seems he was not completely successful in 
any of his roles. 
 As a scientist, his experiments in porcelain were promising. Most of the porcela in 
came from China, and an efficient way to locally make “white gold”, as porcelain was 
known, would ensure the family fortune and plans were made for a factory.  However, 
the war with Sweden, among other things, had disrupted his schedule. 
 As a philosopher, he was being eclipsed by the Dutch philosopher Benedictus 
Spinoza with whom he had engaged in a correspondence.  And as a mathematician, he 
had hoped to make his mark by finding a general method to solve equations of any 
degree, discussed in a paper he wrote back in 1683.  However, the philosopher-
mathematician Gottfried Liebniz had pointed out certain difficulties with his method. 
 He gave a deep sigh, turned around and walked towards his desk. He picked up a 
delicate porcelain vase one of his craftsmen had made.  It was decorated with paintings of 
grape vines. 
 Perhaps one day, he mused, one of my ideas will also bear fruit. 

 
Almost three hundred years later, in a certain tropical country south-east of 

China… 
 
 
I. Introduction 
 
 In this paper, we will answer two related questions. First, can we turn any 
irreducible solvable equation Q(x) into the binomial form 0cy 0

n =+  in radicals using a 
Tschirnhausen transformation?  For example, can we turn the solvable quintic, 
 



 01xx3x3x2x 2345 =++−+−  
 
into the binomial form, 
 
 0cy 0

n =+  
 
for some constant 0c ? Second, the generalization of the first, can we turn a solvable 
equation Q(x) with no repeated roots into any solvable form P(y) of the same degree in 
radicals using a Tschirnhausen transformation? For example, using the same solvable 
quintic given above: 
 

01xx3x3x2x 2345 =++−+−  
  
which has discriminant 2151035D = , can we turn it into any arbitrary solvable quintic, say, 
 
 01yy2y2y 2345 =+−+−  
 
with discriminant 215475D =  in radicals? Or equivalently, can we express the roots iy  of 
the latter in terms of the roots ix  of the former? 
 
 The answer is yes, for both questions and the proof, in fact is quite simple. 
 
 
II. The Tschirnhausen Transformation 
 
 One of the crucial insights into solving the general cubic way back in the 16th 
century was that it was possible to depress or reduce the cubic such that it had no 2x  
term. Niccolo “Tartaglia” Fontana (1499-1557) could solve cubics of the form, 
 
 qpxx 3 =+  
 
and while initially thought as not being a general solution, in fact, it was all that was 
needed, as was realized by Girolamo Cardano (1501-1576).  Given the general cubic, 
 
 0cbxaxx 23 =+++  
 
we do the substitution x = y+r, for some indeterminate r. Expanding and collecting, we 
have, 
 
 0)cbrarr(y)bar2r3(y)ar3(y 23223 =+++++++++  
 
 By equating any of the coefficients (other than the constant term) to zero, one can 
easily solve for r using an equation less than a cubic.  For the 2y  term, we have r = -a/3. 
The method can obviously be applied to any nth degree equation. 



 
 For the cubic case, this was taken further by Francois Viete (1540-1603) when he 
managed to find a solution to the general cubic which required the extraction of only one 
cube root, a fact which was the inspiration for this paper. 
 
 An important contribution to extending the previous results was made in a short 
paper written in 1683 by Count Ehrenfried Walter von Tschirnhaus (1651-1708) who 
observed that this substitution can be generalized to higher degrees. Given the general 
equation, 
 
 0axa...xax 01

1n
1n

n =++++ −
−  

 
the Cardano-Viete substitution was simply 0bxy += .  By allowing more general 
substitutions, 
 
 01

1m
1m

m bxb...xbxy ++++= −
−  

 
we can potentially eliminate more than one term of any nth degree equation similar to 
how Viete managed to do for the general cubic. We get the transformed equation, 
 
 0cyc...ycy 01

1n
1n

n =++++ −
−  

 
where m coefficients ic  can be eliminated, as the m parameters ib  enable us to fulfill m 
conditions.  If we set m = n-1 and all 0c i =  (other than )c 0  and by solving for the ib , we 
can reduce the original equation to the binomial form, 
 
 0cy 0

n =+  
 
Thus, 
 
 01

2n
1n

1nn
0 bxb...xbxc ++++=− −

−
−  

 
an equation one degree less than the original.  Tschirnhaus may have thought that by this 
gradual reduction, one degree at a time, all equations of any degree can be solved in 
radicals.   
 
We can illustrate the procedure with the cubic.  Given the depressed cubic, 

 
0cbxx 3 =++  

 
we can eliminate the 1x  term as well by using the quadratic Tschirnhausen 
transformation nmxxy 2 ++=  to get the cubic, 
 



0))nmxx(y))(nmxx(y))(nmxx(y( 3
2

32
2

21
2

1 =++−++−++−  
 
Collecting the new variable y, we have, 
 

( ) ( )
( ) 0nbn2nbmcmn3nbcmbcmc

yn3bn4bmcm3byn3b2y
322232

22223

=−+−−−++−+

+−+++−+
 

 
Solving for the unknowns m, n to eliminate 2y  and y, we get, 
 

 
b6

)c27b4(3c9
m

23 +±−
=  

 
3
b2

n =  

 
and, using the negative case, we have the binomial cubic, 
 

 0
b54

)c27b4(3c3c27b4)c27b4(
y

3

232323

3 =





 ++++

−  

 
and since, 
 
 nmxxy 2 ++=  
 
by getting the cube root of the constant term, we have reduced the problem to solving a 
quadratic.  It should be pointed out that the prevalence of the expression 23 c27b4 +  is 
understandable considering it is the discriminant of the cubic. 
 

As applied to the general quintic to remove its 4y  and 3y  terms, this results in 
what is called the principal quintic.  While the general quintic is not solvable in radicals, 
the principal quintic is solvable in the general case, as first done by Felix Klein (1849-
1925), though one has to solve a related icosahedral equation and go beyond radicals and 
use hypergeometric functions. 
 

The square root used to obtain the principal quintic is called by Klein the 
accessory irrationality, as it does not diminish the Galois group of the equation and as 
such, is not expressible in terms of the roots of the equation.  This point will be very 
important to us later. 
 
 However, there was a problem with the Tschirnhausen transformation noticed by 
the philosopher-mathematician Gottfried Leibniz (1646-1716).  The system of equations 
in the unknowns ib , having degrees from 1 to n-1, was very hard to solve. From Bezout’s 
theorem, (Etienne Bezout, 1730-1783) which states that the degree of the final equation 
of m complete equations in m unknowns is equal to the product of the degrees, then our 



final equation is of (n-1)! degree. Thus, for n > 3 we end up trying to solve an equation of 
much higher degree than the original. 
 
 There was a clever transformation though that allowed three terms to be 
eliminated from general equations of degree 5 and higher.  This transformation is due to 
Erland Bring (1736-1798) with his work on quintics and independently, George Jerrard 
(1804-1863), who generalized it to higher degrees.  

 
Later we will show that three terms can be eliminated from the general quartic as 

well, in contrast to what William Rowan Hamilton (1805-1865) thought as was 
mentioned in the paper “Inquiry Into The Validity Of A Method Recently Proposed By 
George B. Jerrard, Esq., For Transforming And Resolving Equations of Elevated 
Degrees”. 
 
 To eliminate 3 terms from the general equation, the logical step was to use a third-
degree Tschirnhausen transformation, namely, 
 
  01

2
2

3 bxbxbxy +++=  
 
 We know that this will give us a system of 3 equations of degrees 1, 2, 3 and from 
Bezout’s theorem, our final equation is of degree 3! = 6.  However, Bring, and later, 
Jerrard, found a way around this obstacle.  Instead of a cubic Tschirnhausen 
transformation, they used a quartic one of form, 
 
 01

2
2

3
3

4 bxbxbxbxy ++++=  
 
 The extra parameter allowed them to reduce the system of equations to eventually 
just solving a quadratic, then a cubic. This can then reduce the general quintic to the 
form, 
 
 0dydy 01

5 =++  
 
known as the Bring-Jerrard quintic. This form is also solvable in the general case though 
one has to use again hypergeometric functions. For a contemporary treatment of the 
details, the interested reader is referred to the paper by V. Adamchik and D. Jeffrey, 
“Polynomial Transformations of Tschirnhaus, Bring, and Jerrard”. 
 
 To reduce the quintic beyond the Bring-Jerrard form, to the binomial form, as was 
mentioned in the abstract we would need an n-1 Tschirnhausen transformation, hence 
also a quartic one. However, unlike the Bring-Jerrard form, since we have to eliminate 
four terms, we need all four ib  and do not have the luxury of an extra parameter to help 
in any simplification.   
 

Our system then will be four equations in four unknowns, of degrees 1, 2, 3, 4, 
hence the final equation is of degree 4! = 24.  Will this be solvable in radicals?  In 



general, obviously not.  But since we limited ourselves to solvable equations, we can 
prove, that for this subset of equations, this 24th degree equation is indeed also solvable. 
 
 
III. Theorems 
 
 It has already been pointed out that one advantage modern mathematicians have 
over mathematicians of centuries past is the technological one: the access to computers, 
computer algebra systems, and the Internet.  What past mathematicians didn’t do due to 
the sheer amount of effort involved, we can let the computer do for us. 
 
 So to find whether a solvable equation, say, a quintic can be reduced to binomial 
form, we can actually try to resolve the system of 4 equations in the 4 unknowns ib . For 
every solvable quintic tested by the author, the 24th degree was also solvable, i.e. it was 
reducible such that it had a factor less than the fifth degree. 
 
 However, what was desired was a general proof.  How to prove that the 24th 
degree equation, for solvable quintics, had solvable factors?  The author wrestled with the 
problem for a while until it was realized that there was another question easier to answer: 
Can one prove that the roots of the 24th degree equation of the ib  were expressible in 
terms of the roots ix  of the solvable quintic? 
 

The answer is yes. 
 
Theorem 1.  Any irreducible but solvable equation Q(x) can be transformed into the 
binomial form 0cy 0

n =+  in radicals using a Tschirnhausen transformation of degree n-1. 
 
Proof: 
 
 What was realized was that since we had n-1 equations in n-1 unknowns, instead 
of focusing on the resultant (n-1)!-degree equation, what we were dealing with was 
simply a matrix.  
 
 Let us use the particular case of the quintic. We have: 
 
 0axaxaxaxax)x(Q 01

2
2

3
3

4
4

5 =+++++=  
 
where it is desired to transform it into the form, 
 
 0cy 0

5 =+  
 
using the quartic Tschirnhausen transformation, 
 
 01

2
2

3
3

4 bxbxbxbxy ++++=  
 



or specifically, 
 

011
2

12
3

13
4

11 bxbxbxbxy ++++=  
 021

2
22

3
23

4
22 bxbxbxbxy ++++=  

 031
2

32
3

33
4

33 bxbxbxbxy ++++=  
 041

2
42

3
43

4
44 bxbxbxbxy ++++=  

 051
2

52
3

53
4

55 bxbxbxbxy ++++=  
 

It seems we have 5 equations in 4 unknowns. However, since 0cy 0
5 =+ , then we 

can express our iy  in terms of the fifth root of 0c  and the fifth roots of unity. 
 

011
2

12
3

13
4

14
5

0 bxbxbxbxbc ++++=−  

 021
2

22
3

23
4

24
5

0 bxbxbxbxbc ++++=− ω  

 031
2

32
3

33
4

34
25

0 bxbxbxbxbc ++++=− ω  

 041
2

42
3

43
4

44
35

0 bxbxbxbxbc ++++=− ω  

 051
2

52
3

53
4

54
45

0 bxbxbxbxbc ++++=− ω  
 
where ω is any complex fifth root of unity. 
 
By eliminating 5

0c− , 
 
 021

2
22

3
23

4
2011

2
12

3
13

4
1 bxbxbxbx)bxbxbxbx( ++++=++++ ω  

 031
2

32
3

33
4

3
2

011
2

12
3

13
4

1 bxbxbxbx)bxbxbxbx( ++++=++++ ω  
 041

2
42

3
43

4
4

3
011

2
12

3
13

4
1 bxbxbxbx)bxbxbxbx( ++++=++++ ω  

 051
2

52
3

53
4

5
4

011
2

12
3

13
4

1 bxbxbxbx)bxbxbxbx( ++++=++++ ω  
 
then we really just have 4 linear equations in the 4 unknowns ib !  By using Gaussian 
elimination, the ib  can be solved for and expressed in terms of the ix  which are the roots 
of the solvable quintic. Therefore, the ib  are also roots of solvable equations, equations 
of the 24th degree. 
 
 While we have used the particular case of the quintic, one can easily see that 
results can be applied to any degree and thus we have proven the theorem that a solvable 
equation of any degree can be transformed to binomial form in radicals. 
 
 The constant term to transform the quintic into the binomial form has a 
particularly nice form.  Solving the system of equations above, we have,  
  

4
5

3
4

2
321

4
54321

3
54321

2
543215432154321

0
zzzzz

zxxxxxzxxxxxzxxxxxzxxxxxz
b

ωωωω

ωωωω

+−+−

+−+−
=  



 
where, 
 
 )xx)(xx)(xx)(xx)(xx)(xx(z 5453435242321 −−−−−−=  
 )xx)(xx)(xx)(xx)(xx)(xx(z 5453435141312 −−−−−−=
 )xx)(xx)(xx)(xx)(xx)(xx(z 5452425141213 −−−−−−=  
 )xx)(xx)(xx)(xx)(xx)(xx(z 5352325131214 −−−−−−=  
 )xx)(xx)(xx)(xx)(xx)(xx(z 4342324131215 −−−−−−=  
 
 Before we go to the second theorem, we recall a statement made earlier, that 
Hamilton believed the general quartic could not be reduced to binomial form.  (The same 
W. Hamilton who, when he first came up with the laws for the qua ternions, on impulse 
etched it on the Brougham bridge.)   
 

We quote from page 4 of the paper cited earlier, to wit, “…the processes 
proposed by Mr. Jerrard … although valid as general transformations of the equation of 
the mth degree, become in general illusory when they are applied to resolve equations of 
the fourth and fifth degrees, by reducing them to the binomial form…” 

 
One interpretation of the statement is that the particular method by which Jerrard 

could eliminate 3 terms from the general quintic was believed by Hamilton as not 
applicable to the general quartic, although other methods may apply to eliminate 3 terms 
from the quartic and reduce it to binomial form.  

 
For our method, which is just a straightforward Tschirnhausen transformation, our 

ib  would be roots of a 3! = 6-th degree equation with rational coefficients and generally 
irreducible. However, we have seen that the ib  would be expressible in terms of the roots 

ix  of the quartic, and hence, this sextic should be solvable. Thus, the general quartic 
indeed can be reduced to binomial form. 
 
 
Theorem 2.  Any solvable equation Q(x), with no repeated roots, can be transformed into 
any solvable form P(y) of the same degree in radicals using a Tschirnhausen 
transformation of degree n-1. 
 
Proof: 
 
 The second theorem is the generalization of the first, since now we wish to turn 
the solvable nth degree equation not just into the binomial form, but into any solvable 
form of the same degree. While the Tschirnhausen transformation was developed in the 
context of eliminating intermediate terms in an equation by setting some of the ic = 0, we 
can also set the ic  as equal to specific constants, thus transfo rming one equation into a 
desired equation.  
 



 However, since we are dealing with n coefficients ic  (excluding the leading 
coefficient which is assumed to be equal to one), then we have n equations in n 
unknowns and our final equation has n! degree. 
 
Given, 

 
0axa...xax)x(Q 01

1n
1n

n =++++= −
−  

 
It is desired to transform it into the form, 
 
 0cyc...ycy)y(P 01

1n
1n

n =++++= −
−  

 
with n coefficients ic using the n-1 degree Tschirnhausen relation, 
 
 01

2n
1n

1n
n bxb...xbxby ++++= −

−
−  

 
with n coefficients ib . 
 
For the particular case of the cubic we have,  
 

011
2

121 bxbxby ++=  
 021

2
222 bxbxby ++=  

 031
2

323 bxbxby ++=  
 
It is even more straightforward to see that the second theorem is just n linear equations in 
the n unknowns ib  which by Gaussian elimination can be expressed in terms of the ix  
and iy . 
 
Solving for the ib , we have, 
 

 
)xx)(xx)(xx(

y)xx(y)xx(y)xx(
b

323121

321231132
2 −−−

−++−+−
=  

 
)xx)(xx)(xx(

y)xx(y)xx(y)xx(
b

323121

3
2

2
2

12
2

3
2

11
2

3
2

2
1 −−−

+−+−++−
=  

 
)xx)(xx)(xx(

y)xxxx(y)xxxx(y)xxxx(
b

323121

3
2

212
2

12
2

313
2

11
2

323
2

2
0 −−−

−++−+−
=  

 
 As one can see, the structure of the denominators justifies the prohibition of 
repeated roots of Q(x).  The ib  are roots of 3! = 6-th degree equations with rational 
coefficients but since the ix  and iy  can be expressed in radicals, then so can the ib . 
 



 Again, while we have used a particular case, this time the cubic, one can easily 
see that the basic idea can apply to any degree.  While the ib  are roots of n! degree 
equations, if the ix  and iy  can be expressed in radicals, then this n! degree equation is 
also solvable and we have proven the second theorem. 
 
 There is an implication to the theorem that is already well-established, although it 
is usually not mentioned in the context of a Tschirnhausen transformation.  Since we 
have proven that any solvable equation Q(x), with no repeated roots, can be transformed 
into any solvable form P(y) of the same degree in radicals, then we can also transform 
the cyclotomic equation 1x n =  into any solvable form. 
 
 Consider the Lagrange resolvents of the roots iy  of some equation P(y), 
 
 1n

n
2

321 y...yyy)(u −++++= ωωωω  
 
where ω  is any complex nth root of unity.  For the specific case of the quintic, we have 
 
 4

5
3

4
2

321 yyyyy)(u ωωωωω ++++=  
 
A variation of the above is given by, 
 
 k

1
k2

2
k3

3
k4

41k uuuuy ωωωω +++=+  
 
for k = {0,1,2,3,4}. Or expressed another way, 
 
 )(u)(u)(u)(uy k

1
2k

2
3k

3
4k

41k ωωωω +++=+  
 
Or, 
 
 xuxuxuxuy 1

2
2

3
3

4
4i +++=  

 
where the ix  are the five roots of 1x 5 = .  It is starting to look like a Tschirnhausen 
transformation.  In fact, it is a Tschirnhausen transformation. 
 
 It is a theorem that if a quintic with rational coefficients is solvable, then its roots 

iy  are expressible in the form above, where the iu  are the 5th roots of the roots of a 
quartic (the Lagrange resolvent) also with rational coefficients. 
 
 Thus, the solution of a solvable quintic P(y) in terms of its Lagrange resolvents is 
nothing more than a Tschirnhausen transformation that transforms the cyclotomic 
equation 1x 5 =  into P(y). 
 



 In general then, the solution of a solvable equation P(y) of prime degree n in 
terms of its Lagrange resolvents is just a Tschirnhausen transformation of degree n-1 that 
transforms the cyclotomic equation 1x n =  into P(y). 
 
 
III. Examples 
 
 We can give some examples in transforming a solvable equation to binomial 
form, particularly in the quintic case.  While we can derive the ib  by solving its matrix, 
as we did for 0b , it seems that the expressions would be horribly complex.  We may 
desire a more aesthetic form and one way to do so is to derive the 24th degree equation 
and see if it has small factors.  It seems Nature cooperates and we can in fact find 
relatively simple expressions for the ib . 
 
 We will give two examples that illustrate different “structures” of the solvable 
quintic based on their quartic Lagrange resolvents: for the first, the resolvent is reducible 
while for the second, it is irreducible.  For a simple way to find these Lagrange 
resolvents, the reader is referred to the paper “An Easy Way To Solve The Solvable 
Quintic Using Two Sextics” by the same author. 
 
Example 1. 
 
Given the solvable quintic, 
 
 05x15x60x15x3 235 =++++  
 

with discriminant = 
4

25

3
29995  

 
Resolvent has a zero root and is given by: 
 
 (z+3)(z+9)(3z-1)=0 
 
So, 
 
 99483.1)3/1(33x 5/15/25/1 −=+−−=  
 
 We can also use our alternative method of reducing it to binomial form.  We use 
the quartic Tschirnhausen transformation, with the unknown coefficients m, n, p, q as ib , 
 
 qpxnxmxxy 234 ++++=  
 
Expanding and collecting the new variable y, 
 



 ∏
=

=++++−
5

1i
i

2
i

3
i

4
i 0))qpxnxmxx(y(  

 
where the ix  are the five roots of our quintic, we get, 
 
 0cycycycycy 01

2
2

3
3

4
4

5 =+++++  
 
where the ic  are polynomials in the unknowns m, n, p, q.  By solving the system of 
equations where the ic  are set 0cccc 1234 ==== , we would expect a final equation of 
the 24th degree. 
 
 In practice, the final equation gets a more elevated degree.  Solving for m by 
eliminating one unknown at a time by getting their resultant, we have the sequence of 
degrees, 
 
 }48{}8,6{}4,3,2{}4,3,2,1{ →→→  
 
thus, we end up with a 48th degree equation in m with rational coefficients.  However it 
factors with a spurious 24th degree factor and the correct 24th degree one, which for this 
particular example has 4 linear factors, namely, 
 
 (-64+79m)(11+127m)(111+191m)(47+270m) = 0 
 
 Using the first factor m = 64/79, we find the rest of the coefficients of the 
Tschirnhausen transformation,  
 

 
79

884
x

237
5419

x
79
295

x
79
64

xy 234 ++++=  

 
and our binomial quintic is given by, 
 

 0
237
2999

3
1

y
5

5 =













+  

 
Since the discriminant D of a binomial quintic 0fy5 =+  is simply 4fD = , then it 

shouldn’t be surprising that the discriminant of the original quintic, 
4

25

3
29995

D = , appears 

in the constant term. 
 

Getting its fifth root, and equating it to the Tschirnahausen relation above, we 
then have, 
 

 2652x5419x885x192x237
3

2999 234
5

++++=− ω  



 
where ω  is any of the five 5th roots of unity.  Each of the five possible quartics will have 
one root in common with the original quintic.   
 

However, since our 24th degree equation has four linear roots, then there are four 
ways to define the coefficients of the Tschirnhausen transformation, the other three given 
by, 

 

 1606x7269x2144x33x381
3

2999 234

5 2
+++−=ω  

 288x5718x1236x47x270
3

2999 234

5 3
+++−=− ω  

 596x2912x941x111x191
3

2999 234

5 4
−++−=ω  

  
 
Example 2. 
 
Given the solvable quintic, 
 
 01x2x2xx 235 =+−+−  
 
with discriminant = 247  
 
Irreducible resolvent is given by: 
 

 0
5
1

z
5
988

z
5

856
z

5
13

z
1510

2
6

3
2

4 =−+++  

 
So, 
 
 ...734691.1zzzz 5/1

4
5/1

3
5/1

2
5/1

1 −=+++  
  
We can do the same procedure as in the first example.  However, this time, the correct 
24th degree equation has an irreducible quartic factor, namely, 
 
 071m293m369m127m19 234 =−+−+  
 
with one root given by, 
 

 
76

)5331745(94583127
m




 −++−
=  

 



Finding the rest of the coefficients of the Tschirnhausen transformation,  
 
 qpxnxmxxy 234 ++++=  
 
we have, 
 

 
38

)541125(9454278
n




 −++−
=  

 
38

)562145(47511110
p




 −+−
=  

190

)5331745(4705165605
q




 −−+−
=  

 
and our binomial quintic is the rather intimidating, 
 

0
19*10
v47

y
5

2
5 =−  

 
where, 
 

)5/742222210381101653340054642619986(47)56271311408830(235v −++−−=
 
we can again get its fifth root and the five values substituted into the Tschirnhausen 
relation above should give us five quartics, each with one root in common with the 
original quintic. 
 
 However, there should also be four ways to define the coefficients of the 
Tschirnhausen relation, as in the first example.  The other variables n, p, q obviously are 
roots of quartics, namely, 
 
 0241n444n61n156n19 234 =−−−+  
 0305p935p760p220p19 234 =+−+−  
 0976q3080q3220q1210q95 234 =++++  
 
as well as the 0c , the constant in the binomial.  Its quartic is cumbersome to write down 
though it has a rather curious additional role, as we shall see later. 
 
Let 0

5c19r = , 
 
 04719r47195*41r47195*1745038r475*563532r5 10158103255433645 =−−+−  
 



 Since it would be tedious to identify which root of one variable goes with which 
root of another, the efficient way would be to express the roots of the other four quartics 
in terms of the roots of the first.  In other words, we seek to find a Tschirnhausen 
transformation to transform the first quartic into any of the other four. 
 
 This is where our second theorem comes in.  We know it can be done.  But again, 
it seems that we will just end up with complicated expressions. 
 
 In general, if we transform a random solvable equation into another random one, 
perhaps that is the case.  But for this particular case, the five quartics are somehow 
“related”.  For one thing, they have a common factor in their discriminants.  So, one can 
try to apply the second theorem to see what happens. 
 
 We would need a cubic Tschirnhausen transformation with 4 unknowns, namely, 
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i +++=  
 
where vi  in turn will be transformed into n, p, q, and 0c ,  
 
 Let nv i =  
 
Expanding and collecting terms, 
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where the im  are the roots of our quartic in m, we get, 
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where the ic  are polynomials in the unknowns a, b, c, d.  Instead of setting the ic  as 
equal to zero, we set it to the coefficients of the n equation, namely, 
 
 19/156c 3 =  
 19/61c 2 −=  
 19/444c1 −=  
 19/241c 0 −=  
 
 Solving for the unknown a in this system of 4 equations in 4 unknowns, we again 
expect a solvable 24th degree equation. (In reality, it is also a 48th degree equation with a 
spurious 24th degree factor.) 
 



 Fortunately, Nature again cooperates with a sense of aesthetics of her own.  The 
correct 24th degree equation is not only solvable but it factors, with 4 linear factors and a 
20th degree equation, 
 
 (-6041+541a)(-931+541a)(2221+541a)(4751+541a) = 0 
 
As we need only one, the logical choice would be the smallest factor, 
 
 (-931+541a) = 0 
 

Since we now have one unknown, we can find the other three unknown 
coefficients of the Tschirnhausen relation, which turns out to be given by,  
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The same process can be applied in turn to the other quartics and in the end we 

will have a more aesthetic set of relations. 
 
So, given the solvable quintic, 
 

01x2x2xx 235 =+−+−  
 
Let the Tschirnhausen transformation be, 

 
qpxnxmxxy 234 ++++=  

 
where, 
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and, 
 
 071m293m369m127m19 234 =−+−+  
 
and we have the binomial quintic, 
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in four ways, depending on the root chosen of the m quartic.   
 
 
IV. Conjectures. 
 
 While we have accomplished what we have set out to do, namely to establish 
certain broad and definitive statements about solvable equations, we can go into the finer 
details relevant to our topic. To complement our two theorems, we can make some 
remarks of a more speculative nature. 
 
Conjecture 1. Let n be prime.  Then the final equation with degree (n-1)! of the system 
of equations of the ib  used to transform a solvable equation Q(x) into the binomial 
form 0cy 0

n =+  has a factor, with rational coefficients, of degree n-1. 
 
 We have already mentioned the Lagrange resolvents.  It is a theorem that these 
resolvents, or their nth powers, are roots of equations with rational coefficients of degree 
n-1.  Furthermore, these coefficients are determined by equations of degree (n-2)! which 
have, for solvable equations, a linear factor.  In short, Lagrange resolvent equations are 
factors of a (n-1)! degree equation, just like our final equation. 
 
 Since both the Lagrange resolvents and our ib  are expressed in terms of the roots 
of the original equation and the nth roots of unity, then perhaps we can expect similar 
behavior in their defining polynomials as well and we can make our conjecture. 
  
 
Conjecture 2.  Let n be prime.  If a solvable equation Q(x) is transformed into the 
binomial form 0cy 0

n =± , then 0c  is a root of a Lagrange resolvent that solves another 
solvable nth degree equation R(y). 
 
 The author noticed this when deriving the quartic of 0c  (in the variable r).  As one 
can see, its constant term is the fifth power 10154719 .  Since we have already pointed out 
in a previous paper (“An Easy Way…”) that the quartic Lagrange resolvent of the 
solvable quintic always has a constant term that is the fifth power of a rational number, 
this fact was suspicious. 
 
 It turned out that this quartic was indeed the resolvent of another quintic, namely, 
 
 0475*123031y2142577579y629565y13395y)y(R 32235 =−−−−=  
 
such that, 
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For the cubic transformed into the binomial cubic, this was generally true.  To 
recall, given the reduced cubic, 
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We transform it to the binomial, 
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The unsigned constant term of the above is a root of the quadratic, 
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with a constant term that is a third power, which is not surprising.  It turns out this is the 
Lagrange resolvent equation for the cubic, 
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such that, 
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 While the conjecture is true for n = 3 (and it is trivial for the case n = 2), is the 
conjecture generally true for all prime n?  It seems an interesting question to ask. 
 
 
V.  Conclusion 
 
 The original four-page paper which Tschirnhaus wrote, probably between doing 
chemical experiments on porcelain and writing to the philosopher Spinoza, was entitled, 
in translation, “A Method For Removing All Intermediate Terms From A Given 
Equation”. 
 
 The primary objection to the method, as was first pointed out by Leibniz, was that 
to eliminate more and more intermediate terms, the final equation turns out to be of much 
higher degree than the original and apparently much harder to solve.  There doesn’t seem 
to any mention of whether this final equation was expressible or not in terms of a) the 
roots of the original equation or b) the roots of unity, nor whether this was a relevant 
point to consider. 
 



 In hindsight, that is understandable. The importance of the roots of unity would 
have to wait until Abraham de Moivre (1667-1754) and other mathematicians of the 18th 
century such as Leonhard Euler (1707-1783).  The formula, 
 
 )nsin(i)ncos()sini(cos n αααα +=+  
 
was first given by Euler only in 1748, though it is usually referred to as de Moivre’s 
formula.   
 

And with the work of Joseph-Louis Lagrange (1736-1813), another piece of the 
puzzle fell in place, namely the role of the permutations of the roots, though it was only 
in the early 19th century with the arrival of Abel and Galois that the complete picture 
emerged. 

 
Tschirnhaus’ method, addressed at trying to solve any equation of any degree, 

was certainly not true in the general case.  However, as we have seen, for the class of 
equations that were solvable, the method in fact was valid. 

 
Tschirnhaus would have been pleased. 
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