"On the Clustering of Sums of Quartic Sextuples" | ||||||||||||||||||||||||||||||||||||||
by Titus Piezas III | ||||||||||||||||||||||||||||||||||||||
This is a short side article to the main paper "Ramanujan and the Quartic Equation 2^4+2^4+3^4+4^4+4^4=5^4". Originally, this was to be a section there but because of space constraints was placed here. An observation made by the author in the course of studying quartic sextuples was that there seem to be a preference for certain sums. A brute-force, exhaustive search was done for (a,b,c,d,e,f) as primitive solutions to a^4+b^4+c^4+d^4+e^4=f^4. For f<146, we have the first 43 solutions, |
||||||||||||||||||||||||||||||||||||||
b 2 2 6 10 21 2 8 4 13 14 4 6 8 8 39 4 16 13 42 24 12 16 35 48 52 15 14 28 28 36 31 38 11 42 12 24 23 32 48 17 19 96 46 |
c 3 6 8 10 22 12 24 26 16 28 32 31 13 12 44 32 24 32 48 38 54 22 52 66 57 50 26 63 63 56 48 58 26 44 28 52 46 53 64 68 48 96 62 |
d 4 12 9 17 26 24 36 27 44 33 34 44 28 32 46 32 36 34 51 68 54 38 60 67 74 50 54 82 72 84 58 71 84 84 78 74 52 116 87 104 74 108 63 |
e 4 13 14 30 28 44 38 42 48 52 51 46 54 64 52 63 63 84 78 73 77 84 80 78 76 100 103 88 94 88 112 108 118 117 131 131 144 126 138 132 142 108 142 |
f 5 15 15 31 35 45 45 45 55 55 55 55 55 65 65 65 65 85 85 85 85 85 89 95 95 103 105 105 105 105 115 115 125 125 135 135 145 145 145 145 145 145 145 |
||||||||||||||||||||||||||||||||||
a 2 2 4 10 4 1 1 4 2 2 4 4 4 1 2 4 12 2 4 8 12 13 10 6 22 4 6 6 22 23 4 14 8 18 4 12 2 4 6 8 14 17 26 |
||||||||||||||||||||||||||||||||||||||
Table 1 | ||||||||||||||||||||||||||||||||||||||
Why is there a clustering? Or why do some sums appear again and again? The odds that the sum of five 4th powers of random integers below a certain range will be itself a 4th power may not be so high. Yet some 4th powers seem to have a tendency to be decomposable into 4th powers in much more than one way! Compare to the first 15 smallest primitive solutions in positive integers to cubic quintuples a^3+b^3+c^3+d^3=e^3: | ||||||||||||||||||||||||||||||||||||||
e 7 12 13 13 14 18 18 20 23 24 25 26 26 28 28 |
||||||||||||||||||||||||||||||||||||||
d 6 11 12 10 13 14 17 14 18 19 24 21 21 26 27 |
||||||||||||||||||||||||||||||||||||||
a 1 3 1 5 2 1 4 11 6 5 7 3 5 1 2 |
b 1 3 5 7 3 7 7 12 14 14 9 15 11 10 4 |
c 5 7 7 9 8 14 8 13 15 16 9 17 19 15 13 |
||||||||||||||||||||||||||||||||||||
Table 2 | ||||||||||||||||||||||||||||||||||||||
Of course, if we extend Table 2 also to the first 43 solutions, there is also some sort of "clustering" but not as dense. And since one can see the average "spacing" is quite near anyway, for the same sums to appear might not be so unusual. For the quartic sums of Table 1, the spacing is farther yet the clustering is denser. Why? Other than multiple representations as p^2+3q^2 pointed out in the main paper and which applies only to certain sextuples, there might be another algebraic reason for it. It might be productive to extend Table 1 to f < 1000 to see if this phenomenon continues. | ||||||||||||||||||||||||||||||||||||||
(c) 2005 Titus Piezas III |