A Page on Solving Solvable Quintics | ||||||||||||||||||||||||||||
"An Easy Way To Solve The Solvable Quintic Using Two Sextics" by Titus Piezas III ABSTRACT: Using a method initially developed by George Young (1819-1889), Arthur Cayley (1821-1895), and later by George Watson (1886-1965), an explicit quartic is constructed to enable the solution in radicals of a quintic when it is a solvable equation. Not one, but two sextic resolvents are derived which are important to forming the coefficients of this quartic. Certain difficulties and their solutions as well as a novel consequence to the method are also addressed in this paper. Mathematics Subject Classification: Primary: 12E12; Secondary: 12F10. |
||||||||||||||||||||||||||||
PaperOnQuintic.pdf | ||||||||||||||||||||||||||||
For those who wish to try the method, the MSWord file below should facilitate copy-and-paste to a computer algebra software. | ||||||||||||||||||||||||||||
Quintic.doc | ||||||||||||||||||||||||||||
See also: http://mathworld.wolfram.com/topics/Piezas.html | ||||||||||||||||||||||||||||
More Quintics Page | ||||||||||||||||||||||||||||
Quartic Page | ||||||||||||||||||||||||||||
For an index of papers visit the Homepage |
||||||||||||||||||||||||||||
This webpage was modified Dec. 1, 2004. | ||||||||||||||||||||||||||||