Page 1: Ramanujan Constant | ||||||||||||||||||||||||||
"Ramanujan's Constant (e^(pi*sqrt(163))) And Its Cousins" How do we explain the numerical phenomena: e^(pi*sqrt(163)) ~ 640320^3 + 743.99999999999925... e^(pi*sqrt(37)) ~ 2^6(6+sqrt(37))^6 - 24.00000138... e^(pi*sqrt(130)) ~ 12^4(323+40*sqrt(65))^4 - 104.0000000000012... Are these just flukes or do these numbers fit in a pattern? It turns out the answer is the latter. Quadratic powers sqrt(d) of Gelfond's constant e^pi, numbers which are transcendental, can be closely approximated by certain algebraic numbers. The "excess" of the approximation is also predictable, and approaches various integer values the larger d becomes. Not to mention that it has an interesting connection to pi formulas and the Monster group... For number theory, please jump to Page 9 or see this author's "A Collection of Algebraic Identities." |
||||||||||||||||||||||||||
Choose your format | ||||||||||||||||||||||||||
Ramanujan_constant.htm | ||||||||||||||||||||||||||
Ramanujan_constant.pdf | ||||||||||||||||||||||||||
<-- needs to be re-encoded though | ||||||||||||||||||||||||||
See also: | ||||||||||||||||||||||||||
http://mathworld.wolfram.com/RamanujanConstant.html | ||||||||||||||||||||||||||
Page 2 | ||||||||||||||||||||||||||
Index | ||||||||||||||||||||||||||
This webpage was born May 12, 2005. | ||||||||||||||||||||||||||