Page 14: Ramanujan and Fifth Powers | |||||||||||||||||||||||||||
New!: Check out this author's "A Collection of Algebraic Identities" for more equal sums of like powers. | |||||||||||||||||||||||||||
"Ramanujan and Fifth Power Identities" Ramanujan gave several identities of the form, a1^4 + a2^4 + a3^4 = 2b1^(2k) for a positive integer k. It turns out we can generalize this to third and fifth powers, a1^3 + a2^3 + a3^3 + a4^3 = 2b1^(3k) a1^5 + a2^5 + a3^5 + a4^5 + a5^5 + a6^5 = 2b1^(5k) Other quintic identities will also be given, including a sum-product in binary quadratic forms that is analogous to the ones found for third and fourth powers. |
|||||||||||||||||||||||||||
Choose your format: | |||||||||||||||||||||||||||
Ramfifth.html | Ramfifth.pdf | ||||||||||||||||||||||||||
See also: http://mathworld.wolfram.com/topics/Piezas.html |
|||||||||||||||||||||||||||
Page 13 | |||||||||||||||||||||||||||
Page 15 | |||||||||||||||||||||||||||
Index | |||||||||||||||||||||||||||
This webpage was born May 5, 2006 | |||||||||||||||||||||||||||