Page 8: Octonions and The Eight-Square Identity | |||||||||||||||||||||||||||||
New!: Check out this author's "A Collection of Algebraic Identities" for more results. | |||||||||||||||||||||||||||||
"The Degen-Graves-Cayley Eight-Square Identity" Ramanujan was fascinated by algebraic identities and gave many beautiful examples, like the "Ramanujan 6-10-8 Identity". In this article, we discuss the product of two sums of n squares equal to the sum of n squares and give the explicit identities for n = 1, 2, 4, 8. The importance of these is that they are intimately connected to certain division algebras, namely for the reals, complex numbers, quaternions, and octonions. They also automatically lead to Diophantine identities of squares equal to n+1 squares and certain magic squares. However, if we relax some conditions, we can actually find a parametric identity even for n = 16 or, in general, for n a power of 2 and we will give a numerical example. |
|||||||||||||||||||||||||||||
Choose your format: | |||||||||||||||||||||||||||||
DegenGraves1.htm | DegenGraves1.pdf | ||||||||||||||||||||||||||||
The appendix below is an MS Word file for those who wish to verify the eight-square identity. Just cut and paste it to a computer algebra system like www.quickmath.com. | |||||||||||||||||||||||||||||
Appendix.doc | |||||||||||||||||||||||||||||
See also the new entry at http://mathworld.wolfram.com/DegensEight-SquareIdentity.html | |||||||||||||||||||||||||||||
Page 9 | |||||||||||||||||||||||||||||
Page 7 | |||||||||||||||||||||||||||||
Index | |||||||||||||||||||||||||||||
This webpage was born July 17, 2005 | |||||||||||||||||||||||||||||