Page 9: Ramanujan and 3^3+4^3+5^3 = 6^3 | ||||||||||||||||||||||||||||
"Ramanujan and The Cubic Equation 3^3+4^3+5^3 = 6^3" Using this intriguing equation, Ramanujan found the identity, (3x^2+5xy-5y^2)^3+(4x^2-4xy+6y^2)^3+(5x^2-5xy-3y^2)^3 = (6x^2-4xy+4y^2)^3 and asked for more examples of solving cubic quadruples a^3+b^3+c^3+d^3 = 0 in terms of quadratic forms. We answer this question by providing a nice general identity that, starting with any quadruple (a,b,c,d), can generate a quadratic form identity. Furthermore, it can go beyond quadruples so we can use other interesting equations like 11^3+12^3+13^3+14^3 = 20^3, and, 31^3+33^3+35^3+37^3+39^3+41^3 = 66^3. (New!): "A Collection of Algebraic Identities" by this author. |
||||||||||||||||||||||||||||
Choose your format: | ||||||||||||||||||||||||||||
RamCube.htm | ||||||||||||||||||||||||||||
RamCube.pdf | ||||||||||||||||||||||||||||
See also: | ||||||||||||||||||||||||||||
http://mathworld.wolfram.com/DiophantineEquation3rdPowers.html | ||||||||||||||||||||||||||||
For those who wish to verify the four identities in the paper, the Microsoft Word file below should facilitate "cut-and- paste" to a computer algebra system like the free site www.quickmath.com. | ||||||||||||||||||||||||||||
RamCube.doc | ||||||||||||||||||||||||||||
Page 9b | ||||||||||||||||||||||||||||
Page 8 | ||||||||||||||||||||||||||||
Index | ||||||||||||||||||||||||||||
This webpage was born Sept 1, 2005 | ||||||||||||||||||||||||||||